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Interlayer grating-to-grating optical interconnect coupling efficiency is simulated and optimized using rigorous
coupled-wave analysis (RCWA) for the case of binary rectangular-groove gratings. The “equivalent index slab
(EIS)” concept is proposed to alleviate the numerical sensitivity problem inherent in the RCWA-leaky-wave
approach, making the method applicable to any multilayer structure that has an arbitrary grating profile, large
refractive-index differences, and a limited grating length. The method is easy to implement and computationally
efficient and can provide optimal designs based on the system designer’s need. To determine the viability of the
RCWA-EIS approach, results are compared to those obtained using the finite-difference time-domain method,
and an excellent agreement is found. © 2016 Optical Society of America
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1. INTRODUCTION

Optical interconnects have demonstrated their indispensable
role in monolithic integration with electrical interconnects
to meet the ever growing needs of terabit per second data rates
driven by modern computing systems. Compared to electrical
links, optical interconnects, which have many practical benefits
such as high bandwidth density, low energy dissipation, and
low communication latency, offer a promising solution for
large-scale integration. As more optical components are inte-
grated, single-layer structures with an increasing number of
waveguides would eventually suffer from unacceptable cross
talk and loss. The development of multilayer platforms with
out-of-plane interlayer optical connectors appears to be inevi-
table, as they provide rerouting capability to avoid high wave-
guide densities and waveguide crossings. Diffraction gratings, as
compact optical connectors, play vital roles in determining the
optical link scale. Designing high-efficiency grating-to-grating
couplers and consequently extending the interconnect scale
have become important research topics in the fields of inter-
connects and packaging.

A number of approaches are available to analyze the grating
diffraction phenomenon, such as coupled-wave approaches
[1,2], modal approaches [3], perturbation methods [4,5],
integral methods [6], differential methods [7], transmission line
equivalent network approaches [5,8], amplitude transmittance
approaches [9–11], coupled-mode approaches [12,13], and
rigorous coupled-wave analysis (RCWA) methods [14,15].

Among all of these methods, RCWA is accurate and compu-
tationally efficient. Previous work with RCWA has primarily
focused on the diffraction analysis of grating structures with
little emphasis on in-coupling into guided waves. The RCWA-
leaky-wave (RCWA-LW) approach [16–18] was proposed to
analyze the out-diffraction of a guided wave via a grating, but
its application is limited to grating structures with small refrac-
tive-index differences. Existing optimization efforts have mostly
focused on fiber-to-grating coupling using advanced search
algorithms [19,20]. Only a limited number of papers have dis-
cussed grating-to-grating coupling. The first preferential-order
optical couplers on different substrates were demonstrated in
[21], but this work utilized volume gratings, and no optimiza-
tion process was provided. Compared with volume gratings,
surface-relief gratings have reduced the thickness and improved
process integration, thus becoming a popular solution in com-
pact interconnect technology. Recent optimization work on in-
terlayer surface-relief grating coupling used the finite-difference
time-domain (FDTD) [22,23], COMSOL multiphysics [24],
or CAMFR simulation package [25] as the starting point to
design the gratings, which can be a very time-consuming
process. There are several papers using a grating design for
a specific structure [26,27], but which do not include any
optimization analysis or trends, providing little information
on designing a distinctly different structure with differing
materials. Sodagar et al. [28] used a MATLAB-implemented
genetic algorithm to optimize interlayer gratings. They showed
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a fast convergence rate, but the optimization process was not
disclosed. Furthermore, this method had limited applicability
because it could only optimize two parameters of the rectangular-
groove gratings, namely the grating period and fill factor, and the
parameters had to be manually changed during optimization
based on educated guesses and past experience.

The present work provides a flexible and comprehensive
method to optimize the interlayer grating coupling efficiency.
The method is easy to use, time efficient, and requires no
educated choice of initial parameters. It could optimize a large
parameter space given a particular grating profile, which is not
limited to a rectangular groove. The interlayer grating coupling
problem is schematically depicted in Fig. 1 (a general represen-
tation that is not to scale). The guided wave confined in the slab
waveguide on the bottom (top) layer is diffracted out via the
grating (out-diffraction) and coupled into another slab wave-
guide on the top (bottom) layer (in-coupling). By the reciprocal
theorem [29,30], grating structures with maximized in-coupling
efficiency subsequently experience maximum out-diffraction
efficiency. Therefore, optimization of a single in-coupling pro-
cess is sufficient to determine optimal grating designs if the top
and bottom gratings are identical. The primary approach in this
work is first to use the RCWA approach to represent the field
distribution of the waveguide grating structure, then to opti-
mize the input parameter space to get the maximized coupling
efficiency, and finally to use FDTD simulation to verify the
results. The RCWA approach solves the exact electromagnetic
boundary-value problem in a straightforward formulation
and gives rapidly converging results. It is assumed that a plane
wave is incident from the cover to an infinitely long periodic
grating. RCWA can approximate the in-coupling process even
though the incident wave, which is the output wave of the out-
diffraction process, is exponentially decreasing.

Grating diffraction analysis is a numerically sensitive prob-
lem. Previous optimizations of the parameter space were mostly
governed by the out-diffraction process modeled by the
RCWA-LW approach, which involves an intermediate step
to determine a complex propagation constant such that the de-
terminant of the boundary condition matrix is zero [7,16,17].
This intermediate calculation is based on the Muller method,
which is very sensitive to initial guesses. Careful choice of the

initial guesses is crucial for the Muller method to converge
to meaningful results, which is especially difficult to achieve
for material systems with large-index differences, thus making
this method tedious and less practical. In the present analysis,
optimization is done on the in-coupling process, and an
“equivalent index slab” method is proposed to determine the
radiation factor of the waveguide grating structure under
investigation. In this way, solving the determinant of a large-
dimension matrix is circumvented, thus extending the appli-
cability of the method to arbitrary material systems.

2. GRATING IN-COUPLING MODEL

As shown in Fig. 1, each surface-relief grating consists of a gen-
eral four-layer structure, namely consisting of the cover, the in-
dex modulation layer, the waveguide, and the substrate. In this
analysis, a surface-relief grating with a given profile is deposited
on a slab dielectric waveguide. This model is also capable of
simulating gratings etched into the waveguide. In the following
analysis, a TE polarization (y direction) wave propagating in the
x direction is considered.

A. Theory and Formulation
The RCWA derivations are based on [14]. As shown in
Fig. 2(a), an electromagnetic plane wave with free-space wave-
length λ0 is obliquely incident upon the surface-relief grating at
an angle θ. The grating layer is composed of a periodic distri-
bution of grating ridges (with refractive index nrd) and grating
grooves (with refractive index ngr), and the fraction of the gra-
ting ridge with respect to the whole period Λ is indicated by the
fill factor f . For nonbinary grating profiles (arbitrary periodic
shapes), the entire grating structure is horizontally sliced into
sublayers, which can be approximated as a series of binary gra-
tings with varying fill factors or ridge locations [31,32]. For

Fig. 1. Schematic representation (not to scale) of a grating-to-
grating coupling process. A guided mode confined in the bottom
waveguide is incident on the diffraction grating and out-diffracted;
the out-diffracted light is incident on the upper grating and coupled
into the upper waveguide.

Fig. 2. Schematic representation of (a) the grating in-coupling pro-
cess and (b) the phase diagram based on the Floquet condition. This
example shows multiple diffraction orders in the cover and substrate
(not optimized for high efficiency), and the −1 order is a possible
guided order whose propagation constant in the x direction is approx-
imately equal to the guided mode propagation constant β in the
waveguide.
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simplicity, the formulation introduced here will be focused on
the binary grating. The relative permittivity of the binary gra-
ting can be expanded in a Fourier series along the x direction in
the form

ϵg�x� � ϵg0 � �ϵrd − ϵgr�
X∞
h�−∞

h≠0

sin�πhf �
πh

exp�jhK x�; (1)

where ϵg0 is the average grating permittivity, defined as
ϵg0 � n2rdf � n2gr�1 − f �, and K is the grating vector magni-
tude (K � 2π∕Λ). For the following analysis, ϵ̃h is defined as

ϵ̃0 � ϵg0; (2)

ϵ̃h � �ϵrd − ϵgr�
sin�πhf �

πh
: (3)

The periodic structure perturbs the incident plane wave into
multiple discrete directions indicated by the diffraction orders,
and it produces both forward-diffracted waves (�z direction)
and backward-diffracted waves (−z direction). Since the inci-
dent wave is TE polarized, the electric field has only a y com-
ponent, while magnetic field has both x and z components.
The electric field in the cover is the sum of the incident
and backward-diffracted waves. The normalized total electric
field in the cover is expressed as

Ecy�x; z� � exp�−jk0nc�sin θx � cos θz��
�

X
i

Ri exp�−jkx;ix � jkcz;iz�; (4)

and the normalized electric field in the substrate is expressed as

Esy�x; z� �
X
i

T i exp�−jkx;ix − jksz;i�z − tg − tw��: (5)

The electric field inside the slab waveguide is a superposition
of forward-z-propagating waves and backward-z-propagating
waves expressed as

Ewy�x; z� �
X
i

fCw�
i exp�−jkwz;i�z − tg��

� Cw−
i exp��jkwz;i�z − tg − tw��g exp�−jkx;ix�;

(6)

where k0 is the wavevector magnitude in free space
(k0 � 2π∕λ0); the summation is from i � −�s − 1�∕2 to
�s − 1�∕2, where s is the total number of diffraction orders
(an odd number for calculation convenience); Ri and T i are
the normalized ith backward-diffracted amplitude (reflected)
and forward-diffracted amplitude (transmitted), respectively;
tg and tw are the grating layer thickness and the waveguide
thickness, respectively; kx;i is the ith propagation constant in
the x direction, defined by the Floquet condition [Fig. 2(b)]

kx;i � k0nc sin θ − iK ; (7)

and krz;i is the propagation constant in the z direction,
defined as

krz;i �
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2r k20 − k

2
x;i

q
nrk0 > jkx;ij

−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;i − n2r k20

q
nrk0 < jkx;ij:

r � c; w; s:

(8)

According to Maxwell’s equation H � j
ωμ∇ × E, the tangential

magnetic fields in the cover, substrate, and waveguide are
expressed as

Hcx�x; z� �
1

jωμ0

�
−jk0nc cosθ exp�−jk0nc�sin θx� cos θz��

�
X
i

jkcz;iRi exp�−jkx;ix� jkcz;iz�
�
; (9)

Hsx�x; z� �
1

jωμ0

X
i
�−jksz;i�T i exp�−jkx;ix − jksz;i�z − tg − tw��;

(10)

Hwx�x; z� �
1

jωμ0

X
i

fCw�
i �−jkwz;i� exp�−jkwz;i�z − tg��

� Cw−
i ��jkwz;i� exp��jkwz;i�z − tg − tw��g

× exp�−jkx;ix�: (11)

The electric field in the grating region (0 < z < tg ) is expressed
by a Fourier expansion in spatial harmonics as

Egy�x; z� �
X
i
Sgy;i exp�−jkx;ix�; (12)

and the tangential magnetic field in the grating region is derived
from Maxwell’s equation as

Hgx�x; z� � −j
ffiffiffiffiffi
ϵ0
μ0

r X
i

U gx;i exp�−jkx;ix�; (13)

where Ugx;i � 1
k0

∂Sgy;i
∂z . Equation (12) satisfies the wave equa-

tion for TE polarization in the grating region,

∇2Egy � k20ϵg�x�Egy � 0: (14)

Equation (12) is substituted into Eq. (14), and the following
equation can be derived:

∂2Sgy;i
∂z2

� �k20ϵg − k2x;i�Sgy;i � 0; (15)

which can be written in a matrixh
∂2Sgy
∂�z 0�2

i
� �Ag �� Sgy �; (16)

where z 0 � k0z and Ag � K2
x − Eg ; Kx is a diagonal matrix

with the �i; i� element being kxi∕k0, and Eg is the matrix of
the permittivity coefficient ϵ̃h [Eqs. (2) and (3)], defined as

Eg �

2
666664

. .
. ..

. ..
. ..

.
⋰

� � � ϵ̃0 ϵ̃−1 ϵ̃−2 � � �
� � � ϵ̃1 ϵ̃0 ϵ̃−1 � � �
� � � ϵ̃2 ϵ̃1 ϵ̃0 � � �
⋰ ..

. ..
. ..

. . .
.

3
777775
: (17)

For a binary grating whose grating profile is symmetric,Eg is
a symmetric matrix (ϵ̃−h � ϵ̃h).

Equation (16) is a typical second-order homogeneous sys-
tem of differential equations, and its solution can be expressed
by the eigenvalues and eigenvectors of matrix Ag . As a result,
the space harmonic expansions of the tangential electric and
magnetic fields in the grating are expressed as
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Sgy;i�z� �
Xs

p�1

wg
i;pfCg�

p exp�−k0qgpz� �Cg−
p exp�k0qgp�z − tg��g;

(18)

Ugx;i�z��
Xs

p�1

vgi;pf−Cg�
p exp�−k0qgpz��Cg−

p exp�k0qgp�z − tg��g;

(19)

where wg
i;p is the �i; p� element of the eigenvector matrix Wg ,

and qgp is the positive square root of the �p; p�th element of the
eigenvalue matrix Qg . According to Eq. (13), it can be found
that vgi;p � wg

i;pq
g
p, and, therefore, Vg � WgQg . C

g�
p and Cg−

p
are unknown coefficients, which will be determined from
the boundary conditions. The exp�−k0qgpz� term represents
forward-propagating (�z) waves, and the exp�k0qgp�z − tg��
term represents backward-propagating (−z) waves in the
grating region.

The coefficients Ri, C
g�
p , Cg−

p , Cw�
i , Cw−

i , and T i for the
cover, grating, waveguide, and substrate can be determined by
matching the tangential electric field Ey [Eqs. (4), (12), (6), and
(5)] and the tangential magnetic field Hx [Eqs. (9), (13), (11),
and (10)] at all boundaries. At z � 0 (the boundary between
the cover and the grating),�

δi0
jnc cos θδi0

�
�

�
I

−jYc

��
R
�
�

�
Wg WgXg
Vg −VgXg

��
C�

g
C−

g

�
;

(20)

at z � tg (the boundary between the grating and waveguide),�
WgXg Wg
VgXg −Vg

��
C�

g
C−

g

�
�

�
I Xw

jYw −jYwXw

��
C�

w
C−

w

�
; (21)

and at z � tg � tw (the boundary between the waveguide and
the substrate),�

Xw I
Xw −I

��
C�

w
C−

w

�
�

�
I

Ys∕w

��
T
�
; (22)

where Xg , Xw, Yc , Yw, and Ys∕w are diagonal matrices with
diagonal elements exp�−k0qgptg�, exp�−jkwz;itw�, kcz;i∕k0,
kwz;i∕k0, and ksz;i∕kwz;i, respectively.

The matrix equations can be merged into a nonhomogene-
ous system of equations represented by Mx � b, and the field
amplitudes x can be calculated by x � inv�M�b. The matrix
inversion can be calculated by inv�M� � V�1∕S�U 0, where
U, S, and V are obtained from the singular value decomposi-
tion M � USV 0. The amplitudes can also be determined by a
transfer matrix approach introduced in [31].

B. “Equivalent Index Slab (EIS)” Approximation for
Diffraction Efficiency Calculation
Since RCWA describes the response due to a plane wave inci-
dent upon a multilayer structure with infinite boundaries along
the x direction, power conservation is only fulfilled in the z
direction, which is perpendicular to the infinite boundaries,
while power flow in the x direction is not involved in the power
conservation. This poses a difficulty when determining the
amount of power coupled into the guided mode in the x
direction. As a result, we need to take advantage of the light
reciprocity and use the out-diffraction process to calculate

indirectly the in-coupling diffraction efficiency. As illustrated
in Fig. 3(a), the in-coupling efficiency to the �1 order in
Fig. 3(a) is the same as the out-diffraction efficiency to �1
order in Fig. 3(b).

Previous work [16–18] attempted to solve the out-diffraction
efficiency by removing the incident light contribution [δi0 in
Eq. (20)] and casting the problem into a homogeneous system
of equations in the form of
2
6666664

−I 0 Wg WgXg 0 0
jỸc 0 Vg −VgXg 0 0
0 0 WgXg Wg −I −Xw

0 0 VgXg −Vg −jỸw jỸwXw
0 −I 0 0 Xw I
0 −Ỹs∕w 0 0 Xw −I

3
7777775

2
6666664

R
T
C�

g
C−

g
C�

w
C−

w

3
7777775

�

2
6666664

0
0
0
0
0
0

3
7777775
;

(23)

which can be represented by Mx � 0. The problem becomes
finding a complex propagation constant γ̃ � β − jα with an un-
known positive real number β and α such that the determinant
of the boundary condition matrix M is minimized (close to
zero). As the complex propagation constant is involved in
the calculation, Eq. (7) is modified to

k̃x;i � γ̃ − iK � �β − iK � − jα; (24)

and Eq. (8) becomes

Fig. 3. Phase diagram of (a) the grating in-coupling and (b) the
out-diffraction process with only the 0 and �1 orders. The light
in-coupling into the �1 order in (a) is the reciprocal process of
the guided wave out-diffraction into the �1 order in (b).
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k̃rz;i �
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2r k20 − k̃

2
rz;i

q
Re�k̃rz;i� > Im�k̃rz;i�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2r k20 − k̃

2
rz;i

q
Re�k̃rz;i� < Im�k̃rz;i�

r � c; s:

(25)

Then, Ỹc , Ỹw, and Ỹs∕w are defined as k̃cz;i∕k0, k̃wz;i∕k0, and
k̃sz;i∕kwz;i, respectively. The application of this method is lim-
ited to grating structures with small-index modulations (Δn is
on the order of 0.01–0.5); however, it is difficult for the algo-
rithm to find a γ̃ solution within reasonable boundaries when
the index difference is large (Δn > 1), even though Δn is suc-
cessively increased from small values to the desired value, and
the converged results obtained from the Muller method are
used as the initial guesses for the next steps.

Here, we propose the “equivalent index slab (EIS)” method
to circumvent the process of minimizing the determinant. In
this analysis, the grating is designed to couple the i � �1 order
diffracted wave into the waveguide, which ensures the mini-
mum number of propagating orders in the cover and the sub-
strate and thus maximizes diffraction efficiencies, as shown in
Fig. 3. All fields in the structure, as well as the propagation
constants, can be determined from the in-coupling process.
By reciprocity, in-coupled light and out-diffracted light should
have the same real propagation constant in the x direction, de-
noted as β. The problem becomes finding the radiation factor α
that will be used to calculate the diffraction efficiencies. The
grating layer, whose field expansion involves a sum of exponen-
tial terms, is replaced by L layers of uniform equivalent slabs
with unknown refractive indices, and the electric field expan-
sion in the z direction of the l th slab is

Ely;i�z� � Cl�
i exp f−jklz;i �z − �l − 1�t l �g

� Cl−
i exp��jklz;i�z − l t l ��; (26)

where t l � tg∕L, and L is an arbitrary positive integer (L ≥ 4).
With only two diffraction orders (0 and�1) involved, the only
requirement for definition of the equivalent slabs is matching
the field amplitudes R0 and R1 at the cover-grating interface
and Cw�

0 , Cw−
0 , Cw�

1 , and Cw−
1 at the grating-waveguide inter-

face. As shown in Fig. 4, the equivalent slabs generate the same
fields outside grating region, even though the field distributions
inside the grating region may vary. Retaining the field profiles

in the cover and the waveguide is important because the radi-
ation losses are mainly due to the radiation in the cover and the
substrate. Similar to a “black box,” the complicated field expan-
sion inside of the “box” is replaced by simple expressions, while
the outside fields remain unchanged. The EIS concept is similar
to the method introduced in [33], in which the grating layer is
replaced by a homogeneous dielectric slab with a predefined
index and then simulated by the transmission line approach.
But here, the equivalent slab indices are varied based on the
fields outside the gratings.

The RCWA-EIS approach works well when only two dif-
fraction orders are considered. If more diffraction orders are
involved, a larger boundary condition matrix, in the form of
Eq. (23), has to be constructed, and the formulation is then
no different from the RCWA-LW approach. In that case, there
is no point in finding equivalent index slabs to replace the gra-
ting. In other words, the RCWA-EIS approach is a simplified
version of the RCWA-LW approach relying on multiple equiv-
alent index slabs to represent the grating, and it can only be
efficiently used to treat a small number of diffraction orders.

Specifically, by imposing boundary conditions on the elec-
tric and magnetic fields, the following transfer matrix formu-
lation can be obtained for the 0th order:�

1

−k0nc cos�θ�

�
�
�

1

kcz;0

�
R0

�
YL
l�1

�
1 El;0

−klz;0 klz;0El;0

��
El;0 1

−klz;0El;0 klz;0

�−1

×
�

1 Ew;0

−kwz;0 kwz;0Ew;0

��
Cw�

0

Cw−
0

�
�

�
P0;11 P0;12

P0;21 P0;22

��
Cw�

0

Cw−
0

�
;

(27)

where El;0 � exp�−jklz;0t l �, Ew;0 � exp�−jkwz;0t l �, and klz;0 is
defined in the same way as in Eq. (8), except for replacing the
refractive index with the unknown equivalent slab index nl .
Equation (27) can be transformed into

P0;11Cw�
0 � P0;12Cw−

0 − 1 − R0 � 0; (28)

P0;21Cw�
0 � P0;22Cw−

0 − kcz;0R0 � k0nc cos�θ� � 0: (29)

The transfer matrix formulation for the �1 order has a similar
form as Eq. (27) but excludes the incident light contribution (1
and k0nc cos θ), and it can be transformed into

P1;11Cw�
1 � P1;12Cw−

1 − R1 � 0; (30)

P1;21Cw�
1 � P1;22Cw−

1 − kcz;1R1 � 0; (31)

where kcz;0, kwz;0, R0, R1, Cw�
0 , Cw−

0 , Cw�
1 , and Cw−

1 are known
from the in-coupling calculation.

The problem then becomes finding L equivalent refractive
indices such that Eqs. (28)–(31) are satisfied simultaneously.
This can be done by using the MATLAB function fsolve and
restricting function values to be less than 0.01. The algorithm
used in fsolve is chosen to be the Levenberg–Marquardt
method, which is based on the nonlinear least-squares algo-
rithms and can be used if the system may not have a zero.
The algorithm still returns a point where the residual is small.
Normally, L � 4 is enough to achieve the function tolerance.

Fig. 4. Schematic representation of field repetition outside of the
grating by equivalent index slabs. (a) Electric field amplitude along
the z direction of the multilayer grating structure, and (b) equivalent
index slabs are used to replace the grating layer. It is not necessary to
consider the fields inside the grating region.
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After the number of equivalent slabs and their correspond-
ing indices are determined, the radiation factor α is determined
using a similar process as that discussed in [34]. But here, we
will consider two out-diffracted orders with kx;0 � β − jα and
kx;1 � K − β − jα as propagation constants in the x direction.
The sign of the real part of kx;1 is not of consequence since kx;1
is only used to calculate kcz;1, ksz;1, and kwz;1. The transfer ma-
trix formulations for both orders are in the form of Eq. (27)
(without incident light) with the replacement�

Cw�
0

Cw−
0

�
�

�
Ew;0∕1 1

−k̃wz;0Ew;0∕1 k̃wz;0∕1

�
−1
�

1
k̃sz;0∕1

�
T 0∕1 (32)

and can be written in a simplified form as�
1

k̃cz;0∕1

�
R0∕1 �

�
Q0∕1;1
Q0∕1;2

�
T 0∕1; (33)

which results in R0∕1 � Q0∕1;1T 0∕1, where 0∕1 indicates
the 0 or �1 order. Therefore, we need to find an α such that
R0 − Q0T 0 and R1 − Q1T 1 are simultaneously close to zero
for the existence of an out-diffracted order/in-coupled order.
Again, this can be achieved by the MATLAB function fsolve
with the Levenberg–Marquardt method. Here, the field
amplitudes inside the grating are assumed to be the same
for the in-coupling and out-diffracted situations, similar to
the assumption in the RCWA-LW approach [16–18].

After α is determined, the diffraction efficiency can be cal-
culated by substituting the complex propagation constant γ̃ �
β − jα into Eq. (23) and conducting the singular value decom-
position of the matrix M, which is M � USVT . The solution
to the homogeneous systemMx � 0 is the column vector of V
corresponding to the smallest singular value. The values of Ri
and T i can be calculated correspondingly. The out-diffraction
efficiency can be determined by first calculating the power flow
in the z direction. The energy flux density is represented by the
Poynting vector S � 1

2 Re�E ×H	�, which can be reduced to
Sz � − 1

2
Re�EyH	

x � for power flow in the z direction. The re-
flected power density and transmitted power density are calcu-
lated as

Srz;i �
1

2
RiR	

i
Re�kcz;i�
ωμ0

; (34)

Stz;i �
1

2
T iT 	

i
Re�ksz;i�
ωμ0

; (35)

for Re�kcz;i� < k0nc and Re�ksz;i� < k0ns, respectively.
Otherwise, set Srz;i and Stz;i to zero. The preferential coupling
ratios PCc;i and PCs;i of the ith order are defined as

PCc;i �
Srz;iP

i�Srz;i � Stz;i�
; (36)

PCs;i �
Stz;iP

i�Srz;i � Stz;i�
: (37)

Finally, the diffraction efficiencies DEc;i and DEs;i of the ith
order at a given grating length l are estimated by an exponen-
tial decaying distribution as

DEc;i � PCc;i�1 − exp�−2αl��; (38)

DEs;i � PCs;i�1 − exp�−2αl��: (39)

C. Optimization and Validation
Given a set of parameters, such as the incident wavelength,
waveguide thickness, grating height, grating period, and grating
fill factor (grating profile), the above analysis directly gives the
electric field distribution of the four-layer structure. Note that
the fields calculated by RCWA are plane-wave fields. RCWA is
not accurate for the situation in which the field is gradually
building up or decaying away. But, using the radiation factor
α, we can approximate decaying behavior of the field due to the
existence of the grating. Since the grating is designed to couple
the i � �1 order diffracted wave into the waveguide, kx;�1

should be comparable to the fundamental propagation constant
of the slab waveguide β0. In this analysis, kx;�1 is restricted to
be in the range jβ0 − kx;�1j < k0nw − β0. β0 can be found using
the method described in [34]. Briefly, the propagation con-
stants of all possible propagating modes in the slab waveguide
βi are calculated by matching all tangential fields at the boun-
daries in a multilayer structure consisting of the cover, the
waveguide, and the substrate. The propagation constant βi
is a function of the material refractive indices (nc , nw, ns)
and the waveguide thickness (tw). If it exists, the fundamental
mode β0 is the one farthest from the cutoff, and thus will be
considered in the analysis.

The present model is implemented in MATLAB and opti-
mized using the function fmincon, available in the MATLAB
optimization toolbox, which minimizes a function specified
by a set of constraints. Specifically, inputs to the model are
as follows: (1) the initial values of a set of undecided parameters
[e.g., any combination of relative permittivity ϵr, incident
wavelength λ, incident angle (or coupling angle) θ, grating pro-
file (fill factor f or ridge location), grating period Λ, grating
thickness tg , and waveguide thickness tw], (2) the lower and
upper bounds of each parameter, (3) the function tolerance,
and (4) the nonlinear constraint jβ0 − kx;�1j < k0nw − β0. The
model outputs the final values of those parameters that give the
minimum value of 1 − DEc;�1, which corresponds to maximiz-
ing DEc;�1.

In terms of validation, the optimized parameters can be first
checked by the following criterion. For the i � �1 order to be
coupled to the slab waveguide, kx;�1 must be approximately
equal to the fundamental mode propagation constant β0 in the
waveguide, as indicated in Fig. 3. Then, the optimized structure
can be validated by 2D FDTD simulation. The FDTD sim-
ulation program used here is MEEP, a free software package
developed at Massachusetts Institute of Technology (MIT).

3. RESULTS AND DISCUSSION

This model is capable of optimizing any parameters in a given
configuration. In the analysis described here, a binary grating
deposited on top of the waveguide is considered. For demon-
stration purposes, three parameters, namely grating period (Λ),
grating height (tg ), and coupling angle (θ), are the variables to
be optimized, and the other parameters are set as follows: free
space wavelength λ � 1.55 μm, cover refractive index nc � 1
(air), grating groove refractive index ngr � 1 (air), grating ridge
refractive index nrd � 2.46 (Si3N4 [35]), waveguide refractive
index nw � 3.45 (Si [36,37]), substrate refractive index ns �
1.45 (SiO2 [35]), grating fill factor f � 0.5, waveguide thickness
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tw � 0.22 μm. The fundamental mode propagation constant
of the 0.22 μm thick waveguide is calculated to be
β0 � 11.3710 μm−1. The total number of space harmonics
is set to be n � 7. To ensure maximum coupling efficiencies,
the�1 diffracted order is considered. The number of periods is
set to N � 50. The optimization is carried out using the
MATLAB function fmincon with the following constraints:
(1) β0 and kx;�1 (propagation number of the �1 order in
the x direction) should be numerically comparable, and thus
we set the difference to be in the range jβ0 − kx;�1j <
k0nw − β0; (2) the value of α should be restricted so it is
positive; and (3) the upper bounds and lower bounds of the
three variables [Λ, tg , θ] are set to be [1.55 μm, 0.4 μm,
π∕4 rad�45°�] and [0.3 μm, 0.05 μm, 0.1 rad (5.73°)], respec-
tively. Taking into account fabrication limits, the thickness of
the Si3N4 layer should be less than 0.4 μm [28], and the mini-
mum coupling angle should be set to 0.1 rad (5.73°) to reduce
the possibility of coupling into the −1 diffraction order. Due to
the existence of local minima, the optimization may converge
to different final values based on the choice of initial values
(Λ, tg , θ). It is recommended that several optimizations with
different initial values should be chosen to ensure finding a
global minimum. Please note the global minimum may vary
depending on the constraints, which should be carefully evalu-
ated according to specific needs. The optimization time de-
pends on the choice of initial values as well as computer
processor and memory. The computer used in this analysis
has an Intel i5 CPU and 3.8 GB memory. All optimizations
finished within 3 min.

Ten example optimized structures are summarized in
Table 1. Each optimization starts with a set of initial values.
If the initial values are far from the ideal values corresponding
to the optimized structure (relatively large diffraction efficien-
cies), e.g., Cases 7–10, the RCWA-EIS method will still find
the final values that are close to the ideal values, even though
the diffraction efficiencies may not be maximized or accurate.
Those final values can serve as rough estimates of the ideal val-
ues. If the initial values are in the vicinity of the ideal values,
e.g., Case 1–5, the diffraction efficiencies found by the RCWA-
EIS method are maximized and relatively accurate. Multiple
optimizations should be carried out to ensure finding the global
maximum diffraction efficiency, which is still computationally
efficient due to the fast calculation of each optimization.

To give a better understanding of how the RCWA-EIS
method works, the equivalent indices of Case 4 and Case 7
are summarized in Table 2. Case 4 illustrates an example that
only requires four layers (L � 4) to achieve the function tol-
erance (<0.01). Case 7 is an example that requires five layers
(L � 5). The equivalent indices of each layer may be any com-
plex numbers without any physical meaning.

Generated by FDTD, Fig. 5 shows the grating-to-grating
configuration using optimized designs. The distance between
the gratings d is fixed at 1 μm. A waveguide mode at the fre-
quency c∕λ0 � 1.9355 × 108 Hz is launched from the left in
the bottom waveguide. In order to calculate the interlayer gra-
ting coupling efficiency η, the input flux at the bottom wave-
guide and the output flux at the top waveguide need to be
calculated. The single-grating diffraction efficiency �DEc;�1�

Table 1. Optimized Parameters and Calculated Coupling Efficiency for Grating with Binary Rectangular Groove

Binary
Case
Number

Initial Guesses Optimized Values

θ Λ tg θ Λ tg
PCc;�1

DEc;�1 β α
rad (deg) μm μm rad (deg) μm μm @N � 50 μm−1 μm−1

1 0.15 (8.59) 0.55 0.25 0.1761 (10.10) 0.5439 0.2337 0.5345 0.4417 10.8416 0.0322
2 0.20 (11.46) 0.55 0.25 0.2245 (12.86) 0.5462 0.2419 0.5474 0.5117 10.6020 0.0500
3 0.25 (14.32) 0.50 0.15 0.2499 (14.32) 0.5371 0.2071 0.5028 0.4812 10.6963 0.0301
4 0.15 (8.59) 0.55 0.10 0.1584 (9.08) 0.5701 0.2299 0.5328 0.4314 10.3822 0.0291
5 0.30 (17.19) 0.50 0.25 0.1014 (5.81) 0.5951 0.3555 0.8935 0.5142 10.1478 0.0144
6 0.25 (14.32) 0.50 0.30 0.2356 (13.50) 0.4845 0.3619 0.8295 0.5296 12.0212 0.0210
7 0.23 (13.18) 0.67 0.29 0.3137 (17.97) 0.5734 0.2836 0.6004 0.5718 9.7076 0.0531
8 0.20 (11.46) 0.80 0.25 0.2741 (15.70) 0.4968 0.2013 0.4690 0.3401 11.5492 0.0260
9 0.15 (8.59) 1.00 0.30 0.1479 (8.47) 0.6691 0.2629 0.4011 0.3115 8.7933 0.0224
10 0.10 (5.73) 0.70 0.25 0.3029 (17.35) 0.5919 0.2393 0.5000 0.2905 9.4064 0.0147

Table 2. Equivalent Indices of Case 4 and Case 7 Calculated by the RCWA-EIS Method

Case 4 Equivalent Indices

Iteration No. 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer Func. Value

1 1.1467–5.2892j 6.8679� 1.5320j 5.9505–4.2526j −3.0528–1.7341j – 0.0002 < 0.01

Case 7 Equivalent Indices

Iteration No. 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer Func. Value

1 0.7738–2.1118j 5.0964� 1.1922j 4.3978–3.0027j 2.7236� 1.8936j – 0.0264 > 0.01
2 −0.9871� 4.2330j 5.4118� 1.3204j 3.6796–0.8072j 4.5069–2.4320j 2.5383� 2.4434j 0.0020 < 0.01
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can be estimated by
ffiffiffi
η

p
. The FDTD simulation results for Case

7 at grating lengths of 20 and 60 grating periods (l � N × Λ,
where N � 20 and 60) are shown in Figs. 6(a) and 6(b),
respectively. The single-grating diffraction efficiencies as a
function of grating length (or equivalently, number of grating
periods N ) calculated by the RCWA-EIS method and FDTD
for Cases 2, 4, 6, and 7 are shown in Figs. 7(a)–7(d). To
gain some insight into the effect of misalignment on interlayer
grating coupling efficiencies, the top grating is shifted to the left
with respect to the bottom grating by a distance corresponding to
the coupling angle θ, and the FDTD simulation results of this
shifted configuration are also shown in Figs. 7(a)–7(d).

From Fig. 6(a), it is observed that much of the power is lost
at the end of the waveguide. This is due to the limited radiation
associated with the short grating length. By increasing the gra-
ting length, most of the guided power is diffracted and coupled
to the top waveguide, as indicated in Fig. 6(b). From the
FDTD results, it is observed that the optimized structures,
e.g., Cases 6 and 7, have diffraction efficiencies at about
55% at N � 50 or l ≈ 25 μm. As grating length increases,
the diffraction efficiencies approach 60%, which is limited
by the preferential coupling ratio PCc. The RCWA-EIS results
demonstrate good agreement with FDTD results at large N ,
especially for Case 7, whose PCc is about 0.6. The curves cor-
responding to the FDTD results oscillate at small N . This may
due to two reasons: (1) at small grating lengths, the fields in the
structures have not yet reached steady state, and thus the con-
tribution of scattering at the waveguide ends becomes much
more significant; (2) there is a stability issue in the FDTD cal-
culation when a transient source, e.g., a Gaussian source (the
input source in this work), is used, but as time increases, the
nonphysical transients will decay. On the other hand, neither

the scattering effect nor the transient field is considered in the
RCWA, and the RCWA-EIS method generates smooth curves
as a result of the exponential mathematical model, Eq. (38).

Fig. 5. Grating-to-grating structure generated by FDTD.

Fig. 6. FDTD simulations of an optimized binary grating with dif-
ferent numbers of periods: (a) N � 20 and (b) N � 60.

Fig. 7. Single-grating diffraction efficiency �DEc;�1� as a function
of the number of periods or the grating length (l � N × Λ) for Cases
2, 4, 6, and 7.
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Compared with the perfectly aligned configuration, the shifted
configuration gives rise to similar FDTD results, offering the
conclusion that a slight horizontal shift (≈d tan θ) has little
effect on the coupling efficiencies.

To better understand the effect of initial guesses on the final
values, color maps of the single-grating diffraction efficiency are
generated at fixed grating thicknesses tg � 0.25 μm [a com-
mon initial guess, Fig. 8(a)] and tg � 0.2836 μm [the opti-
mized grating thickness in Case 7, Fig. 8(b)]. The diffraction
efficiencies are calculated using the RCWA-EIS method at
N � 50 grating periods. The mesh is set as follows: a grating
period Λ from 0.45 μm to 0.7 μm with an increment of
0.001 μm, and a coupling angle θ from 0.1 rad (5.73°) to
0.4 rad (22.92°) with an increment of 0.001 rad (0.057°).
In both color maps, only limited regions give rise to high dif-
fraction efficiencies, and those efficiency “peaks” are distributed
among efficiency “trenches.” As a result, it is relatively difficult
to find a global maximum because of this complicated “mor-
phology.” It is also observed that grating period and grating
thickness are more influential on the efficiency than the cou-
pling angle. Compared with Fig. 8(a), Fig. 8(b) shows a rela-
tively larger high-efficiency area, which means the grating
thickness tg � 0.2836 μm is a better choice. Based on the
RCWA-EIS calculation, the highest diffraction efficiency of
the color map at tg � 0.2836 μm is 0.6876, which is located
at mesh point Λ � 0.5650 μm and θ � 0.1110 rad�6.34°�.
According to the color map Fig. 8(b), this location is sur-
rounded by many efficiency “trenches,” making it difficult
to reach.

Please note that the optimized structures are not restricted
only to the cases demonstrated here. By varying initial guesses,
multiple optimal parameter sets can be obtained. Due to the

sensitive nature of the numerical problem, the RCWA-EIS
method may obtain an extremely small or even negative α if
the initial guesses are far from the ideal values. Even though
those cases are avoided in the optimization process by setting
constraints in the MATLAB fmincon function, the iteration
may violate the constraints and gives erroneous results (extre-
mely small or negative values). Again, this problem can be
avoided by running multiple optimizations.

Finally, to further prove the validity of the RCWA-EIS
method, its results for a small-index-difference system are com-
pared with those generated by the RCWA-LW approach. The
material system chosen is based on Papadopoulos and Glytsis
[38]: λ0 � 1 μm, nc � ngr � 1, nrd � nw � 1.7321, ns �
1.5166, f � 0.5, tw � λ0∕π, tg � 0.2λ0, Λ � 0.5λ0, and
θ � 0.4328 rad�24.8°�. The RCWA-EIS approach gives γ̃ �
9.9311–0.0212j μm−1 (α � 0.0212 μm−1) and PCc;�1 �
0.4422. As shown in Fig. 9, the diffraction efficiency DEc;�1

calculated by the RCWA-EIS approach is plotted with respect
to the number of periods N and compared with those calcu-
lated by the RCWA-LW approach. The plot corresponding to
the RCWA-LW approach is generated by extracting data points
from Fig. 9 of Papadopoulos and Glytsis [38]. Exponential
curve fitting of the extracted data points gives PCc;�1 �
0.4930 and α � 0.0196 μm−1. The curves demonstrate good
agreement at small N , while the relatively large offsets at larger
N result from the difference in PCc;�1 and α. Nevertheless, the
offset is bounded by the difference in PCc;�1, which is about
5%. It can be concluded that the RCWA-EIS approach is also
effective in simulating systems with small-index differences.

4. CONCLUSIONS

In this work, optimization of interlayer grating coupling effi-
ciency is achieved by the RCWA-EIS method introduced here.
By assuming identical top and bottom gratings, the coupling
efficiency is estimated by the single-grating diffraction effi-
ciency based on the in-coupling process. The “equivalent index
slab” method is proposed to solve the numerical instability in
material systems with large-index differences. The advantages
of this optimization method are: an arbitrary choice of grating

Fig. 8. Color map of the single-grating diffraction efficiency
�DEc;�1� with different grating thicknesses calculated at N � 50.

Fig. 9. Single-grating diffraction efficiency (DEc;�1) as a function
of the number of periods for a small-index-difference system. Both
the RCWA-EIS and RCWA-LW approaches are effective in simulating
systems with small-index differences.
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profile, fast calculation, wide parameter space search, easy im-
plementation, and accurate results. The limitation of this
method is that it can only optimize the �1 diffraction order
due to the EIS approximation. The EIS method takes into ac-
count a limited number of the diffraction orders, whereas the
RCWA-LW approach considers all of them. RCWA-EIS sim-
plifies the evaluation of a large-dimension matrix in the
RCWA-LW approach but reduces the capability to evaluate
higher orders. Nevertheless, it is not necessary to optimize
higher diffraction orders since the maximized diffraction effi-
ciency is realized when the number diffracted orders is mini-
mized. This method optimizes a given material system, but
the coupling efficiency can be further improved by incorporat-
ing high-index coatings, reflective mirrors, overlays, etc., which
are not considered here. In summary, the RCWA-EIS method
is a useful tool for system designers to optimize the efficiency of
interlayer grating structures.
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