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The grating coupling efficiencies for interlayer connection (overlaid chips) were previously calculated using the
new rigorous coupled-wave analysis equivalent-index-slab (RCWA-EIS) method. The chip-to-chip coupling
efficiencies were determined for rectangular-groove (binary) gratings. In the present work, the search algorithms
used in the RCWA-EIS method are optimized giving rise to improved definition of equivalent indices. Further,
the versatility of the RCWA-EIS method is demonstrated by extending it to (nonbinary) parallelogramic gratings,
sawtooth gratings, and volume gratings. The finite-difference time-domain method is used to verify the results.
This demonstrates the flexibility of the RCWA-EIS method in analyzing arbitrary 1D gratings. © 2016 Optical

Society of America

OCIS codes: (050.1950) Diffraction gratings; (050.1960) Diffraction theory; (060.1810) Buffers, couplers, routers, switches, and

multiplexers; (130.0130) Integrated optics; (250.5300) Photonic integrated circuits.
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1. INTRODUCTION

There exist a great variety of grating structures that are being
used in the field of optical interconnects (grating couplers
[1–3]), optical components (polarizers [4], modulators [5],
switches [6]), optoelectronics [7,8], sensors [9–11], antennas
[12,13], etc. Surface-relief gratings, with a periodic variation
in the surface profile, and volume holographic gratings, with
a periodic variation in the refractive index of the material, com-
prise two categories of diffraction gratings. Surface-relief gratings
have either a symmetric profile, e.g., binary gratings, triangular
gratings, etc., or an asymmetric profile, e.g., parallelogramic gra-
tings, sawtooth gratings, etc. It is well known that asymmetric
profiles can enhance the grating diffraction efficiency into
specific directions, and this property has been extensively ap-
plied in the design of optical components. Compared with vol-
ume gratings which are mostly polymer-based or glass-based,
surface-relief gratings have reduced thicknesses, thus becoming
a popular solution in compact interconnect technologies. In
addition, surface-relief gratings can be fabricated using sili-
con-based materials, and they can be directly integrated into
the CMOS platform. Volume gratings have been extensively ex-
plored in the field of data storage [14], optical correlation
[15,16], optical information encryption [17], fiber communica-
tions [18], spectroscopy [19], etc., due to their large bandwidth
storage capability and high sensitivity in wavelength and angle.
The large variety and wide use of diffraction gratings make their
design critically important.

Grating diffraction behaviors have been extensively
studied and many theories have been proposed, including

coupled-wave approaches [20,21], modal approaches [22], per-
turbation methods [23,24], integral methods [25], differential
methods [26], transmission line equivalent network approaches
[24,27], amplitude transmittance approaches [28–30],
coupled-mode approaches [31,32], and rigorous coupled-wave
analysis (RCWA) methods [33,34]. The RCWA methods (also
called Floquet modal methods) have been used to analyze
accurately both surface-relief gratings and volume holographic
gratings, and they are generally more computationally efficient
than other methods. As a result, the RCWA methods have be-
come popular choices in the design of grating structures. The
most general goal of optimizing grating structures in various
applications is to enhance the diffraction efficiency into specific
orders. Previous optimization work on grating structures
mainly used the finite-difference time-domain (FDTD) [35],
COMSOL multiphysics [7], or CAMFR [36] simulation pack-
ages, which are typically very time-consuming. Genetic algo-
rithms [37] or advanced search algorithms [38] have been used
to optimize binary rectangular groove gratings, but the design
parameters were limited and no information was provided re-
garding gratings with other profiles. The RCWA-leaky-wave
(RCWA-LW) approach was proposed to optimize the grating
out-diffraction behavior [39,40], but it requires careful choices
of initial values for the Muller method to converge to reason-
able results, thus making this method less practical. For surface-
relief gratings used in sensors, optoelectronics, and optical
components, no design optimizations have been provided,
other than using the Floquet condition [4,7,9] or the surface
plasmon resonance condition (for metallic biosensors) [9].
Therefore, a comprehensive design methodology that could
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accurately simulate the diffraction behavior and efficiently op-
timize an arbitrary grating to achieve specific goals would be
widely applicable.

In the present work, a general model based on the RCWA
equivalent-index-slab (RCWA-EIS) method is introduced to
analyze the diffraction behavior of arbitrary gratings in the
chip-to-chip coupling configuration. This work is an extension
of our previous work [41], in which a flexible and comprehen-
sive tool for the interlayer optical coupling optimization of
binary surface-relief gratings was introduced. Both works are
based on the RCWA methods. The EIS method is introduced
to find the radiation factor (α) of waveguide gratings, and it is
especially useful in systems with large refractive index contrasts.
The optimization tool based on the RCWA-EIS method is
generally accurate, computationally efficient, and easy to imple-
ment. It accepts a large parameter space, e.g., coupling angle,
grating period, grating height, etc., and requires no educated
initial guesses on the parameters being optimized.

By representing the field amplitudes and phases at the boun-
daries and replacing the grating region with equivalent index
slabs, the in-coupling/out-diffraction problem of any 1D gra-
ting structure can be simulated by the RCWA-EIS method.
The in-plane transmitted power can also be calculated by
subtracting the out-diffraction power from the total incident
power. The purpose of this paper is to verify further the
RCWA-EIS method by applying it to nonbinary grating struc-
tures, such as parallelogramic gratings, sawtooth gratings, and
volume gratings. Furthermore, the search algorithms used in
our previous work are optimized and these new algorithms
are found to be more stable and computationally efficient than
the original algorithms.

2. GRATING SIMULATION MODELS

The interlayer grating coupling problem is schematically de-
picted in Fig. 1. Two types of surface-relief gratings, namely
parallelogramic gratings and sawtooth gratings, as well as vol-
ume gratings with sinusoidally varying refractive indices are
considered here. Some basic parameters involved in the models
are as follows: free-space wavelength of incident light λ0, cou-
pling angle in the cover θ, grating thickness tg , waveguide
thickness tw, grating fill factor f , grating period Λ, number
of grating period N , and grating slant angle φ (for parallelogr-
amic and volume gratings). TE (y) polarized planar incidence is
considered in all the models. The formulations of the grating
models follow the previous RCWA work [33,34,41,42]. The

permittivity formulations of each type of grating are introduced
in Appendix A.

3. SEARCH ALGORITHMS

In the RCWA-EIS method, the grating layer is replaced by
multiple homogenous slabs with specified refractive indices.
A total of four equations related to the E fields and H fields
of each of the 0 order and �1 order are involved (Equations
(28)–(31) in our previous work [41]). The MATLAB function
fsolve with the Levenberg–Marquardt (LM) algorithm was used
to find the equivalent indices such that the function values of the
four equations are close to zero. The LM algorithm minimizes
the sum of squares of the functions, and the nonlinear system it
deals with could be underdetermined, critical-sized, or overde-
termined; that is, the number of unknowns could be greater
than, equal to, or less than the number of equations. In our pre-
vious paper, the number of equivalent slabs, Leq, was set to be no
less than 4. For some cases, Leq � 4 did not produce small func-
tion values, e.g., function values > preset function tolerance. In
these cases, the method increased Leq and fsolve was run again,
which inevitably increases the calculation time. After the equiv-
alent indices were determined, fsolve was used once again to find
the radiation factor α in the multilayer structure. This step in-
volves the two equations relating the reflected amplitude and the
transmitted amplitude for each diffracted order (the equations
below Eq. (33) in [41]) that are solved for the one unknown
α. The resulting least-squares problem was solved using
fsolve with the LM algorithm. However, the lower and upper
bound of α cannot be defined in fsolve and this may lead to non-
physically small or negative values of α.

In the present work, we introduce the use of the trust-
region-dogleg (TRD) algorithm of fsolve to find the equivalent
indices. This algorithm is specially designed to solve nonlinear
equations, and it requires the number of equations be the same
as the number of unknowns (here, Leq � 4). The TRD algo-
rithm usually gives small function values, e.g., less than
1 × 10−8. The resulting four equivalent indices are verified fur-
ther by calculating the propagation constant in the multilayer
structure consisting of the cover, the four equivalent index
slabs, the original waveguide, and the substrate, using the for-
mulation reported in [43]. The calculated propagation constant
βeq is then compared with kx;�1 (the propagation constant of
the coupled order along the x direction). The radiation factor α,
as the variable in the optimization, is found by finding the value
that minimizes the sum of the norms of the two equations
relating the reflected and transmitted amplitudes. This step
is achieved by using the MATLAB function fsolve with the
LM algorithm.

Attempts to restrict the search range for α based on prior
knowledge of grating diffraction behavior (e.g., 0 < α < 0.01
for volume grating) were not successful when the global mini-
mum of the function was outside of that range. If α is restricted
to be in a range where the function is monotonic, the resulting
optimized variable value will lie on the boundary of the range.
Therefore, no range is imposed on the search of α. This free-
dom, however, may occasionally result in an unreasonable value
of α, e.g., negative, extremely small (<10−4), or extremely large
(>0.1). These numerical artifacts are due to the finite precision

Fig. 1. Schematic representation (not to scale) of the grating-to-
grating coupling process. The waveguide grating region indicated
by the dashed box represents one of the grating structures at the right
side of the figure.
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used in the computation. In many cases, these nonphysical
values of α may be avoided by slightly changing the values
(�10−4) of input parameters, e.g., coupling angle, grating
period, grating height, etc.

4. RESULTS AND DISCUSSION

A. Grating Diffraction Efficiencies
For the analysis of surface-relief gratings, three grating param-
eters, namely coupling angle (θ), grating period (Λ), and gra-
ting thickness (tg ), are variables to be optimized. The known
parameters are as follows: free-space wavelength λ0 � 1.55 μm,
cover refractive index nc � 1 (air), substrate refractive index
ns � 1.45 (SiO2), grating groove refractive index ngr � 1
(air), grating ridge refractive index nrd � 2.46 (Si3N4), wave-
guide refractive index nw � 3.45 (Si), grating fill factor f �
0.5 (for binary and parallelogramic gratings), and waveguide
thickness tw � 0.22 μm. The fundamental mode propagation
constant of the 0.22 μm-thick waveguide is calculated to be
β0 � 11.3710 μm−1. The total number of space harmonics
is set to be n � 7.

For the analysis of volume gratings, three grating parameters,
namely coupling angle (θ), grating period (Λ), and slant
angle (φ), are variables to be optimized. The known parameters
are as follows: free-space wavelength λ0 � 1.55 μm, cover
refractive index nc � 1 (air), substrate refractive index ns �
1.45 (SiO2), waveguide refractive index nw � 1.8 (generic
material not specified), average grating refractive index ng �
1.8 (chosen for the FDTD calculation), grating refractive index
modulation Δng � 0.1 (Δε ≈ 2ngΔng ), waveguide thickness
tw � 0.4 μm, and grating thickness tg � 0.4 μm. The funda-
mental mode propagation constant of the 0.4 μm-thick
waveguide is calculated to be β0 � 6.3008 μm−1. The total
number of space harmonics is again set to be n � 7.

The optimization of the grating parameters is carried out us-
ing the MATLAB function fmincon. The grating is designed to
couple the i � �1 order diffracted light into/out of the wave-
guide, and thus the target of optimization is the diffraction effi-
ciency of the i � �1 order (DEc;�1), and kx;�1 should be
comparable to β0. Optimizing the single-grating diffraction ef-
ficiency DEc;�1 is the same as optimizing the grating-to-grating
coupling efficiency, which is approximated by DE2

c;�1. To en-
sure the maximum diffraction efficiency of the i � �1 order,
diffraction orders other than i � 0 and i � �1 should not
propagate. Furthermore, to ensure the correctness of the four
equivalent indices, the propagation constant calculated using the
equivalent indices, βeq (taking the real part), should be compa-
rable to kx;�1, and the difference between these two values is
restricted to be less than 2%. As a result, the nonlinear con-
straints in the fmincon function is thus set as follows:
(1) jβ0 − kx;�1j < k0nw − β0, (2) kx;−1 > k0nw, (3) jkx;�1−
βeqj∕jkx;�1j < 0.02, and (4) α > 0. The lower and upper
bounds of the three variables [θ, Λ, tg ] are set to be [0.1 rad
(5.73°), 0.3 μm, 0.05 μm] and [π∕4 rad (45°), 1.55 μm, 0.4 μm],
respectively. Taking into account fabrication limits, the thickness
of the Si3N4 layer should be less than 0.4 μm [37], and themini-
mum coupling angle should be set to 0.1 rad (5.73°) to reduce
the possibility of coupling into −1 diffraction order. For the vol-
ume grating, the lower and upper bounds of �θ;Λ;φ� are set to be

[0.1 rad (5.73°), 0.2 μm, 0.3 rad (17.19°)] and [0.4 rad (22.91°),
1 μm, 1.3 rad (74.48°)], respectively.

For all the grating structures presented in this paper, the
MATLAB function fsolve with the TRD algorithm is used
to find the equivalent indices. The function tolerance of fsolve
is set to be 1 × 10−8. The MATLAB function fsolve with the LM
algorithm is used to find the radiation factor of the multilayer
structure, and its function tolerance is set to be 1 × 10−8. The
optimization is carried out using the MATLAB function fmin-
con with nonlinear constraints specified above. Parameter
sweep of initial values, e.g., [θ, Λ, tg ] for the surface-relief gra-
tings and �θ;Λ;φ� for the volume gratings, can be conducted to
avoid finding of unreasonable α. Normally, α for parallelogr-
amic gratings, sawtooth gratings, and volume gratings are in
the range of [0.01, 0.1], [0.001, 0.02], and [0.001, 0.02],
respectively. In general, the search algorithms work well for gra-
ting structures with relatively large α, e.g., parallelogramic gra-
tings and binary gratings; for grating structures with relatively
small α, e.g., sawtooth gratings and volume gratings, parameter
sweep of initial values is highly recommended.

B. Parallelogramic Grating Coupler
According to Li and Sheard [44], the optimized slant angle for a
forward-slanted paralelogramic grating (geometry defined in
Appendix A) is defined as

φ � arcsin
�
λ0∕

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2gr � f �n2rd − n2gr� − β20 � 2β0λ0∕Λ

q ��
:

(1)

Therefore, the slant angle φ is determined once the grating
period Λ is found for a given material system.

Six optimized paralellogramic gratings, four forward-slanted
cases (case f-pa-1 to case f-pa-4) and two backward-
slanted cases (case b-pa-1 and case b-pa-2), are summarized
in Table 1 which includes the optimized parameters θ, Λ,
and φ as well as the resulting parameters, such as the prefer-
ential coupling ratio in the �1 order (PCc;�1), single-grating
diffraction efficiency of�1 order atN � 50 (DEc;�1), coupled
mode propagation constant (β � kx;�1), and the radiation fac-
tor (α). The single-grating diffraction efficiencies (DEc;�1) as a
function of number of grating periods (N ) for the parallelogr-
amic gratings are shown in Fig. 2. The results obtained from
the RCWA-EIS method demonstrate good agreement with
those calculated by the FDTD calculations. Some of the data
plots corresponding to the FDTD calculations exhibit irregu-
larity due to the numerical instability induced by the slanted
grating structure. The error may be reduced by increasing
the resolution of the FDTD simulation, but it requires more
computation time. It is observed that the optimized forward-
slanted gratings have much larger diffraction efficiencies
(DEc;�1 > 60% at N � 50) than the optimized backward-
slanted gratings (DEc;�1 ≈ 40% at N � 50), which agrees
with the conclusion that forward-slanted parallelogramic gra-
tings give higher diffraction efficiencies as stated in Li and
Sheard [44]. It is also observed that the preferential coupling
ratios (PCc;�1) of the forward-slanted parallelogramic gratings
are much greater than 0.5, which is a good demonstration of
the benefit of using asymmetric grating profiles. It is known
that gratings with symmetric profiles, e.g., sinusoidal and
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rectangular, radiate the incident power (or guided power) al-
most equally into the cover and the substrate, resulting in a
preferential coupling ratio (or radiation directionality) close

to 50% provided the refractive index of the cover is comparable
to that of the substrate. On the contrary, gratings with asym-
metric profiles, e.g., blazed (trapezoidal, sawtooth, or triangu-
lar) and parallelogramic, emit more than 90% of the radiated
power into the cover [45–48]. Nevertheless, the radiation factor
α, defined as the radiated power per unit grating length, of the
blazed grating is very small, and thus a longer grating is required
to radiate the same amount of incident (or guided) power.
Researchers have already found that a parallelogramic grating
provides both a larger radiation factor and higher radiation di-
rectionality than gratings with other tooth profiles [44,49].
Therefore, parallelogramic gratings offer the benefits of simul-
taneously obtaining high diffraction efficiency and high device
compactness. From Tables 1–3, it is found that the radiation
factors α of the forward-slanted parallelogramic gratings are
relatively large compared to those of other grating profiles dis-
cussed in this paper. In spite of their relatively complex profiles,
parallelogramic gratings can be fabricated using the methods
such as those presented in [49,50].

C. Sawtooth Grating Coupler
Six optimized sawtooth gratings, four forward-slanted cases (case
f-saw-1 to case f-saw-4) and two backward-slanted cases (case
b-saw-1 and case b-saw-2), are summarized in Table 2. The sin-
gle-grating diffraction efficiencies (DEc;�1) as a function of
number of grating periods (N ) for the sawtooth gratings are
shown in Fig. 3. The results obtained from the RCWA-EIS
method demonstrate good agreement with those from FDTD
calculations. The optimized forward-slanted gratings have larger
diffraction efficiencies (DEc;�1 ≈ 30% atN � 50) than the op-
timized backward-slanted gratings (DEc;�1 ≈ 20% atN � 50),
though the improvement of the forward-slanted profile is not as

Fig. 2. Single-grating diffraction efficiency (DEc;�1) as a function
of number of periods (N ) or grating length (l � NΛ) for parallelogr-
amic gratings, where Λ is given in Table 1.

Table 2. Optimized Parameters and Calculated Single-Grating Diffraction Efficiencies for Sawtooth Gratingsa

Initial Values Optimized Values

Case
Number

θ
[rad (deg)]

Λ
[μm]

tg
[μm]

θ
[rad (deg)]

Λ
[μm]

tg
[μm]

PCc;�1 DEc;�1 at
N � 50

β
�μm−1�

α
�μm−1�

f-saw-1 0.10 (5.73°) 0.47 0.37 0.2345 (13.44°) 0.4793 0.3667 0.7931 0.2929 12.1672 0.0096
f-saw-2 0.11 (6.30°) 0.53 0.36 0.1201 (6.88°) 0.5406 0.3712 0.7889 0.3085 11.1369 0.0092
f-saw-3 0.10 (5.73°) 0.52 0.31 0.2057 (11.79°) 0.5434 0.2872 0.8033 0.3370 10.7348 0.0010
f-saw-4 0.13 (7.45°) 0.58 0.25 0.1710 (9.80°) 0.4866 0.3572 0.7922 0.2790 12.2226 0.0089
b-saw-1 0.10 (5.73°) 0.60 0.10 0.2317 (13.28°) 0.5356 0.2079 0.5840 0.2366 10.7997 0.0097
b-saw-2 0.25 (14.32°) 0.50 0.25 0.2376 (13.61°) 0.5088 0.2409 0.4864 0.1940 11.3951 0.0099
aForward-slanted sawtooth gratings are indicated by “f-saw,” and backward-slanted ones are indicated by “b-saw.”

Table 1. Optimized Parameters and Calculated Single-Grating Diffraction Efficiencies for Parallelogramic Gratingsa

Initial Values Optimized Values

Case
Number

θ
[rad (deg)]

Λ
[μm]

tg
[μm]

θ
[rad (deg)]

Λ
[μm]

tg
[μm]

φ
[rad (deg)]

PCc;�1 DEc;�1 at
N � 50

β
�μm−1�

α
�μm−1�

f-pa-1 0.30 (17.19°) 0.55 0.30 0.3005 (17.22°) 0.5373 0.3124 0.9942 (54.96°) 0.8175 0.6354 10.4950 0.0279
f-pa-2 0.25 (14.32°) 0.70 0.30 0.1935 (11.09°) 0.5706 0.2994 0.9665 (55.38°) 0.7330 0.6025 10.2310 0.0302
f-pa-3 0.25 (14.32°) 0.55 0.30 0.2916 (16.71°) 0.5573 0.3323 0.9770 (55.98°) 0.7600 0.6622 10.1087 0.0368
f-pa-4 0.10 (5.73°) 0.52 0.39 0.1956 (11.21°) 0.5589 0.3087 0.9757 (55.90°) 0.7923 0.5828 10.4542 0.0238
b-pa-1 0.10 (5.73°) 0.53 0.34 0.2242 (12.85°) 0.5407 0.3095 0.9911 (56.79°) 0.8038 0.4246 10.7192 0.0139
b-pa-2 0.11 (6.30°) 0.48 0.12 0.1507 (8.63°) 0.4912 0.1575 1.0418 (59.69°) 0.8006 0.3609 12.1829 0.0122
aForward-slanted parallelogramic gratings are indicated by “f-pa,” and backward-slanted ones are indicated by “b-pa.”
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significant as in the cases of parallelogramic gratings. The
preferential coupling ratios of the forward-slanted sawtooth gra-
tings are also much larger than 50%. Aoyagi et al. [51] reported
that the blazed grating can direct 97%of the total radiated power
into the desired angle. Although the preferential coupling ratios
of sawtooth gratings shown in Table 2 are approximately 80%,
they can be optimized if the target function isPCc;�1 rather than
DEc;�1. Nevertheless, the resulting diffraction efficiencies are
small due to the small radiation factor common in blazed gratings.

D. Volume Grating Coupler
The volume grating is taken to be a section of thewaveguidewith
sinusoidal indexmodulation; that is, the volume grating is in the
waveguide instead of on top of the waveguide as in the previous
examples. Four optimized volume gratings are summarized in
Table 3. The single-grating diffraction efficiencies (DEc;�1)
as a function of number of grating periods (N ) for the volume
gratings are shown in Fig. 4. The results obtained from the
RCWA-EIS method demonstrate good agreement with those
calculated by the FDTD calculations. As the grating is a part

of the waveguide, the guided field is largely affected by the in-
dex-varying region. Nevertheless, the diffraction efficiency is
relatively small due to the small δng used in this model. Since
the majority of the volume gratings are made of polymer with
typical indices from 1.3 to 1.7, and the index modulationΔng is
usually less than 0.1, the diffraction efficiency of the volume gra-
tings should not be compared with those of surface-relief gra-
tings with large index differences. Here, the results are used
to demonstrate the feasibility of the RCWA-EISmethod in sim-
ulating arbitrary volume gratings.

E. Search Algorithms
The search algorithms proposed in this work and our previous
work are compared in this section. The present algorithm, us-
ing fsolve with TRD and fsolve with LM to find ng;eq and α,
respectively, will be designated as Method 1, while the previous
algorithm, using fsolve with LM and fsolve with LM to find ng;eq
and α, respectively, will be designated as Method 2. Binary
gratings are used to test and compare the two methods. The
material system of the binary gratings are exactly the same
as those of the surface-relief gratings discussed above. Two rep-
resentative cases are summarized in Table 4. Three grating
parameters [θ, Λ, tg ] are [0.3001 rad (17.19°), 0.6000 μm,
0.2340 μm], and [0.2801 rad (16.05°), 0.5311 μm,
0.2432 μm] for Case 1 and Case 2, respectively. The results
obtained from Method 1 are verified by FDTD simulations,

Table 3. Optimized Parameters and Calculated Single-Grating Diffraction Efficiencies for Volume Gratings with
Sinusoidally Varying Indices

Initial Values Optimized Values

Case
Number

θ
[rad (deg)]

Λ
[μm]

φ
[rad (deg)]

θ
[rad (deg)]

Λ
[μm]

φ
[rad (deg)]

PCc;�1 DEc;�1 at
N � 50

β
�μm−1�

α
�μm−1�

vol-1 0.30 (17.19°) 0.70 1.20 (68.75°) 0.1041 (5.96°) 0.7019 0.9255 (53.03°) 0.5968 0.3010 6.7298 0.0098
vol-2 0.20 (11.46°) 0.80 1.10 (63.03°) 0.2107 (12.07°) 0.7864 1.1041 (63.26°) 0.6022 0.2810 6.2883 0.0080
vol-3 0.30 (17.19°) 0.70 1.10 (63.03°) 0.2933 (16.80°) 0.6974 0.9630 (55.18°) 0.6274 0.2684 6.2235 0.0079
vol-4 0.20 (11.46°) 0.80 1.00 (57.30°) 0.1847 (10.58°) 0.8318 1.0985 (62.94°) 0.7415 0.2722 5.9822 0.0055

Fig. 3. Single-grating diffraction efficiency (DEc;�1) as a function
of number of periods (N ) or grating length (l � NΛ) for sawtooth
gratings, where Λ is given in Table 2.

Fig. 4. Single-grating diffraction efficiency (DEc;�1) as a function
of number of periods (N ) or grating length (l � NΛ) for volume
gratings, where Λ is given in Table 3.
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as shown in Fig. 5. Method 1 only requires one calculation to
determine the four equivalent indices, while Method 2 may
require more iterations (adding one layer per iteration) in order
to achieve function tolerance, which is set to be 1 × 10−3 in this
analysis. From Table 4, it is observed that the function values
resulting from Method 1 are extremely small (1 × 10−9 and
1 × 10−13 for the two cases), which means the four equivalent
indices are well chosen. Case 1 gives an example in which
Method 2 requires only one iteration, and the resulting α is
comparable to that obtained from Method 1. In Case 2,
Method 2 requires four iterations in order to achieve the func-
tion tolerance, but the final result is not correct. Case 2 is a
representation in which Method 2 fails to find a reasonable α
but Method 1 succeeds. The validity of Method 2 greatly de-
pends on the function tolerance. If the function tolerance is
set to be 1 × 10−2, Method 2 would iterate one time to give a
reasonable α � 0.0428 for Case 2, as indicated in Table 4.
As a result, Method 1 is a more robust approach in determining
the radiation factor. The equivalent indices result from satisfy-
ing all of the field amplitude and phase conditions at the boun-
daries. The physical interpretation of their values is not
obvious.

5. CONCLUSIONS

The present work validates the RCWA-EIS method by applying
it to parallelogramic gratings, sawtooth gratings, and volume gra-
tings. In general, the RCWA-EIS method can be applied to any
1D grating structure. The improved search algorithms presented
result in a better set of equivalent indices. The RCWA-EIS
method is generally robust for grating structures with large ra-
diation factors (α > 0.01 μm−1), though it may require multiple
trials with different initial guesses α0 for grating structures with
small radiation factors (α < 0.01 μm−1). As a simplified version
of the RCWA-LW approach, the RCWA-EIS method takes into
account two propagating diffraction orders but neglects higher-
order diffracted waves that are evanescent. The RCWA-EIS
method is currently being applied to modeling the effect of rota-
tional misalignment errors in grating-to-grating couplers for the
cases where the 0 and �1 diffracted orders are dominant.

APPENDIX A

A. Parallelogramic Grating
For an arbitrary surface-relief grating, the relative permittivity
of the grating region can be expressed as the Fourier series along
the x direction:Ta
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Fig. 5. Single-grating diffraction efficiency (DEc;�1) as a function
of number of periods (N ) or grating length (l � NΛ) for binary
gratings, where Λ is given in Section 4.E.
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εg�x� � εgr � �εrd − εgr�
X
h

ε̃h exp�jhK x�; (A1)

where ε̃h is the h-th Fourier coefficient, K is the grating vector
magnitude (K � 2π

Λ ), and εgr and εrd are the permittivity of the
grating groove and grating ridge, respectively. A nonbinary gra-
ting can be horizontally sliced into a total of L sublayers, and
each sublayer can be represented by a binary grating. For each
sublayer, the matrix of permittivity coefficient ε̃h as defined in
Eq. (17) in our previous paper [41] is no longer symmetric.

Figure 6 shows two possible parallelogramic gratings, one
with slant angle φ < 90° (designated as “forward-slanted”
in this paper) and the other with φ > 90° (designated as
“backward-slanted”). The guided wave is incident on the gra-
ting in the �x direction from the left. If Δ < W , where Δ �
tg∕ tan φ and W � �1 − f �Λ as shown in Fig. 7, the h-th
Fourier coefficient of the l -th sublayer of the forward-slanted
parallelogramic grating can be expressed as

ε̃l ;h�x� �
1

Λ

Z
Δ−lδ�f Λ

Δ−lδ
exp�−jhK x�dx; (A2)

where δ � Δ∕L. If Δ > W , the parallelogramic grating will be
separated into two sections, and the top and the bottom sec-
tions are divided into L1 and L2 slices, respectively. The h-th
Fourier coefficient of the l -th sublayer of the forward-slanted
parallelogramic grating is expressed as

ε̃l ;h�x� �
8<
:

1
Λ

hR ρ−lδ1
0 exp�−jhK x�dx � R

Λ
ρ−lδ1�W exp�−jhK x�dx

i
; l ∈ �1; L1�

1
Λ

R Λ−lδ2
W −lδ2

exp�−jhK x�dx; l ∈ �L1 � 1; L1 � L2�
; (A3)

where ρ � Δ −W , t2 � W tan φ, t1 � tg − t2, δ1 � t1∕�L1 tan φ�, and δ2 � t2∕�L2 tan φ�, and t1 and t2 are the thickness of
the top and bottom layers, respectively.

Similarly, the ε̃l ;h�x� of the l -th sublayer of the backward-slanted parallelogramic grating can be expressed as

ε̃l ;h�x� �
1

Λ

Z
Λ−Δ��l−1�δ

W −Δ��l−1�δ
exp�−jhK x�dx (A4)

for Δ < W , and

ε̃l ;h�x� �
8<
:

1
Λ

hRΛ−Δ��l−1�δ1
0 exp�−jhK x�dx � R

Λ
Λ−ρ��l−1�δ1 exp�−jhK x�dx

i
; l ∈ �1; L1�

1
Λ

R �l−1�δ2�f Λ
�l−1�δ2 exp�−jhK x�dx; l ∈ �L1 � 1; L1 � L2�

(A5)

for Δ > W .

B. Sawtooth Grating
Figure 8 shows two kinds of sawtooth gratings, namely
(a) “forward-slanted” and (b) “backward-slanted.” The h-th
Fourier coefficient of the l -th sublayer is expressed as

ε̃l ;h�x� �
1

Λ

Z
Λ

Λ−lδ
exp�−jhK x�dx (A6)

for the forward-slanted sawtooth grating, and

ε̃l ;h�x� �
1

Λ

Z
lδ

0

exp�−jhK x�dx (A7)

for the backward-slanted sawtooth grating, where δ � Λ∕L.

C. Volume Grating
Figure 9 shows the structure of a volume grating with slant
angle φ. The permittivity of the volume grating varies sinus-
oidally, which is expressed as

εg � εg0 � Δε cos�K sin φx � K cos φz�; (A8)

where εg0 is the average permittivity and Δε is the amplitude
of the sinusoidal variation. The i-th propagation constant in
x direction is defined as

kx;i � k0ng sin θ 0 − iK sin φ; (A9)

and the i-th propagation constant in z direction in the volume
grating is defined as

kgz;i � k0ng cos θ 0 − iK cos φ; (A10)

where ng � ffiffiffiffiffiffiεg0
p and θ 0 is the 0th order refraction angle inside

of the grating (k0nc sin θ � k0ng sin θ 0, where k0 � 2π
λ0

and nc

Fig. 6. Schematic representation (not to scale) of a guided wave in-
cident on a parallelogramic grating with (a) slant angle φ < 90° or
(b) φ > 90°.

Fig. 7. Sublayers of a “forward-slanted” parallelogramic grating with
Δ < W .
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is the refractive index of the cover). The electric field in the
volume grating is expressed by Fourier expansions in
spatial harmonics as

Egy �
X
i
Sgy;i exp�−jkx;ix − jkgz;iz�; (A11)

and it satisfies the wave equation

∇2Egy � k20εgEgy � 0: (A12)

Substituting Eq. (A11) into Eq. (A12) gives

∂2Sgy;i
∂z2

− j4π
� ffiffiffiffiffiffiεg0
p

cos θ 0

λ
−
i cos φ

Λ

� ∂Sgy;i
∂z

(A13)

� 4π2

Λ2 i�m − i�Sgy;i �
2π2Δε
λ2

�Sgy;i�1 � Sgy;i−1� � 0; (A14)

where m � 2Λ
λ

ffiffiffiffiffiffiεg0
p

cos�θ 0 − φ�. The permittivity matrix of
the volume grating can be expressed in the form of Eq. (A5)
in Moharam and Gaylord [42], and the eigenvector matrix W
and eigenvalue matrix Q of the permittivity matrix can be cal-
culated. The electric field expression in the volume grating is
expressed as

Sgy;i�z� �
X2s
p�1

Cpwi;p exp�qpz� (A15)

where s is the total number of diffraction orders, wi;p is the
�i; p�th element of W (size 2s × 2s), and qp is the �p; p�th
element of Q (size 2s × 2s).

If the volume grating is fabricated in the waveguide, the
nonhomogenous system of equations related to the boundary
conditions is in the form of

2
66664

−I 0 Mg1

−jYc 0 Mg2

0 −I Mg3

0 jYs Mg4

3
77775

2
66664

R

T

C1

C2

3
77775 �

2
6664

δi0

aδi0
0

0

3
7775; (A16)

where a � −jk0nc cos θ; Yc and Ys are diagonal matrices
with diagonal elements kcz;i and ksz;i (defined in [41]), respec-
tively; C1 and C2 are vectors consisting of C1 to Cs and Cs�1

to C2s, respectively; Mg1 is the matrix consisting of the first s

rows of W; the �i; p�th element of Mg2 is M
g1
i;p�qp − jkgz;i�; the

�i; p�th element ofMg3 isM
g1
i;p exp�qp − jkgz;i�; and the �i; p�th

element ofMg4 isM
g1
i;p�qp − jkgz;i� exp�qp − jkgz;i�. The sizes of

Mg1, Mg2, Mg3, and Mg4 are s × 2s, while the others are s × s.
If the volume grating is configured above the waveguide, the
boundary condition matrix is in the form of Eq. (23) of
[41] with appropriate modifications.
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