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The interlayer waveguide grating coupling efficiencies under angular (rotational) misalignments are simulated
using the 3D rigorous coupled-wave analysis (3D-RCWA) together with the RCWA equivalent-index-slab
(RCWA-EIS) method. As examples of conical diffraction, rotations about the two coordinate axes, x and z, defined
by the vectors [1 0 0] and [0 0 1], respectively, as well as an arbitrary axis, defined by the vector [2 2 1], are
simulated for binary rectangular-groove gratings. The interlayer grating coupling efficiency is approximated by
the product of the top- and bottom-grating diffraction efficiencies (DEs). It is found that the bottom-grating DEs
decrease about 25% when the bottom grating is rotated �0.1 rad (5.73°) about the z-axis. DEs slightly increase
(5% to 10% depending on the grating structures) when the bottom grating is rotated �0.1 rad about the x-axis.
This is consistent with the diffraction behavior of an over-modulated grating. When the bottom grating is rotated
about the vector [2 2 1], the change in DEs is asymmetric with a 100% decrease at a rotation angle −0.1 rad and a
67% decrease at a rotation angle�0.1 rad. The method is shown to be computationally efficient and numerically
stable for grating structures with optimized parameters, and the resulting bottom-grating diffraction efficiencies
demonstrate similar trends as those calculated by the 3D finite-difference time-domain simulations. The pro-
cedure presented can be directly used in the analysis and design of interlayer waveguide grating coupling for
optical interconnects in high-density integrated electronics. © 2016 Optical Society of America

OCIS codes: (050.1950) Diffraction gratings; (050.1960) Diffraction theory; (060.1810) Buffers, couplers, routers, switches, and

multiplexers; (130.0130) Integrated optics; (250.5300) Photonic integrated circuits.
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1. INTRODUCTION

A number of promising optical interconnect solutions have
been proposed to achieve compact, high-bandwidth integrated
systems. Diffractive optics, e.g., surface-relief gratings, are nec-
essary elements to couple optical signals into (and out of ) wave-
guides on overlaid chips when the integrated system is extended
to higher dimensions (2.5D or 3D). However, alignment of
diffraction gratings has been a major bottleneck that limits
the grating-to-grating coupling efficiency. The need to align the
grating couplers and other optical components greatly reduces
the possibility of cost-effective manufacturing and automation.
Misalignment may result from mechanical and thermal effects
which are unavoidable during device handling and operation.
As a result, understanding the underlying mechanism and de-
signing misalignment-tolerant grating couplers are important
to the fields of packaging and testing.

There are six degrees of freedom to be considered for mis-
alignment analysis, including three lateral (x, y, z) and three

angular (yaw, pitch, roll), where yaw, pitch, and roll are the
rotational angles about the z-, y-, and x-axes, respectively.
The coordinate system is shown in Fig. 1. For chip-to-chip gra-
ting couplers, the lateral displacements of volume holographic
gratings [1,2] and surface-relief gratings [3,4] have been exper-
imentally studied. There is limited effort analyzing rotational
misalignment, and such efforts all focus on rotations about
the y-axis, or equivalently, changes in the incident angle [5,6].
Wu et al. [7] analyzed the yaw, pitch, and roll rotation of a
volume grating under vertical incidence (zero incident angle),
but they only considered transmission through the grating
instead of coupling into a waveguide. Other efforts related
to misalignment analysis in the field of optical communication
mainly focus on fiber-to-grating coupling [8–11] and laser-to-
grating coupling [12]. Misalignment-tolerant structures have
been proposed to provide solutions to misalignment problems
but those designs did not give general physical insight into the
underlying mechanisms [13–15]. Consequently, it is necessary
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to build a comprehensive simulation model for grating-to-
grating coupling under angular misalignment.

In the present work, interlayer waveguide grating coupling
under angular misalignment is simulated using the 3D rigorous
coupled-wave analysis (3D-RCWA) for conical diffraction [16]
together with the RCWA equivalent-index-slab (RCWA-EIS)
method [17]. The proposed model can handle arbitrary rota-
tions and calculate grating-to-grating coupling efficiency under
the pre-defined rotations. The model can also produce the
change of bottom-grating diffraction efficiency (or equivalently,
the interlayer grating coupling efficiency) as a function of
rotation angle about a particular direction. Implemented in
MATLAB and providing a simple software scheme, the model
is computationally efficient and numerically accurate, com-
pared with the hefty simulation time required for 3D finite-
difference time-domain (FDTD) simulations. Given a specific
requirement, such as the maximum angular rotation of an
interconnect system, the model is capable of optimizing the
grating parameters by using the MATLAB optimization toolbox.

2. THEORY AND FORMULATION

The binary rectangular-groove grating considered in this work
consists of four layers, namely cover, grating, waveguide, and
substrate. The general three-dimensional grating-to-grating
coupling configuration is depicted in Fig. 1. The coordinate
axes of the top and bottom waveguide gratings are labeled
as (xt , yt , zt ) and (xb, yb, zb), respectively. A TE-polarized
guided wave (with field components Ey, Hz , Hx) of free-space
wavelength λ0 is launched into the top waveguide along the −xt
direction and incident on the top grating. The grating structure
is optimized using the method given in [17] such that only the
�1-order diffracted light is propagating, as shown in Fig. 2.
The �1-order diffracted light from the top grating, whose
direction is indicated by the k vector, is then incident conically
onto the bottom grating, when the top and bottom gratings
are not perfectly aligned. The grating-to-grating coupling
efficiency can be approximated by finding the product of the
out-diffraction efficiency of the top grating and the in-coupling
efficiency of the bottom grating. The following analysis calcu-
lates the in-coupling efficiency of the bottom grating under
conical incidence. The conical diffraction of a grating structure

can be analyzed using the RCWA approach [16] if the proper
Euler angles (ϕ; θ;ψ ) of the z-y 0-z 0 0 intrinsic rotation are deter-
mined, as show in Fig. 3. A step-by-step analysis is provided in
Sections 2.A–2.E.

A. Determination of Rotated Grating Coordinate
System
The first step of the misalignment analysis is to determine the
coordinate axes of the bottom grating structure, designated as
x̂b, ŷb, and ẑb. The coordinate system of the top grating struc-
ture, defined by the axes x̂t , ŷt , and ẑ t , is set as the reference
coordinate system. Since the rotational misalignment is the tar-
get of the analysis, the separation between the top and bottom
gratings is not emphasized. For simple calculations, both the
top and bottom coordinate systems are placed at a common
origin and thus no translation is involved. The bottom grating
structure is rotated about an arbitrary axis defined by the unit
vector â. As shown in Fig. 4, the rotation of a vector by an angle
δ about the axis â can be achieved by the following steps:

(1) Rotate the coordinate system about the ẑt -axis such that
â lies in the xtzt plane: Rz�θ1�.

(2) Rotate the coordinate system about the ŷt -axis such that
â lies along the zt -axis: Ry�θ2�.

(3) Rotate the coordinate system by the desired angle δ
about the zt -axis: Rz�δ�.

(4) Perform the inverse of Step (2): R−1
y �θ2� � Ry�−θ2�.

(5) Perform the inverse of Step (1): R−1
z �θ1� � Rz�−θ1�,

Fig. 1. Schematic representation (not to scale) of the three-
dimensional grating-to-grating coupling configuration under angular
misalignment.

Fig. 2. Wave vector diagram of the grating (a) in-coupling and
(b) out-diffraction process with only 0 and �1 orders. The light
in-coupling to the �1 order (a) is the reciprocal process of the
guided-wave out-diffracted to the �1 order (b).

Fig. 3. Proper Euler angles (ϕ; θ;ψ) for the z-y 0-z 0 0 type of intrinsic
rotation. The coordinate system first rotates about the z-axis (same as
zb and z 0) by ϕ, then rotates about the y 0-axis (same as y 0 0) by θ, and
finally rotates about the z 0 0-axis (same as k and z 0 0 0) by ψ.
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where the rotation matrix Rz�γ� is

Rz�γ� �
"
cos γ − sin γ 0
sin γ cos γ 0
0 0 1

#
; (1)

if the coordinate system is rotated clockwise (or equivalently,
the vector is rotated counterclockwise) by an angle γ about
the z-axis, and the rotation matrix Ry�β� is

Ry�β� �
"

cos β 0 sin β
0 1 0

− sin β 0 cos β

#
; (2)

if the coordinate system is rotated clockwise by an angle β about
the y-axis. As a result, the total operation of rotating about
the axis â is Ra � R−1

z �θ1�R−1
y �θ2�Rz�δ�Ry�θ2�Rz�θ1�, and the

bottom coordinate system can be determined as x̂b � Rax̂t ,
ŷb � Raŷt , and ẑb � Raẑt .

B. Determination of Proper Euler Angles
The second step of the misalignment analysis is to determine
the proper Euler angles (ϕ; θ;ψ). For a given rotational mis-
alignment configuration, the coordinate axes (xt , yt , zt ) and
(xb, yb, zb) are known. The bottom coordinate axes are
expressed in the top coordinate system. From the system
(xt , yt , zt ), the system (n; l ; k) can be determined as the follow-
ing unit vectors: n̂ � �0; 1; 0�, l̂ � �− cos θi ; 0; sin θi �, and
k̂ � �sin θi ; 0; cos θi �, where n̂ � ŷt � Ê , l̂ � k̂ × n̂, and θi
is the angle between k̂ and ẑ t or the incident angle. The direc-
tion of the line of nodes, or ~y 0, is determined by ~y 0 � ẑb × k̂.
Then ϕ is the angle between ~yb and ~y 0, defined as
ϕ � cos−1�~yb · ~y 0∕�j~ybjj~y 0j��; θ is the angle between ~zb and ~k,
defined as θ � cos−1�~zb · ~k∕�j~zbjj~kj�� (note θ and θi are com-
pletely different variables); and ψ is the angle between ~l and ~y 0,
defined as ψ � cos−1�~l · ~y 0∕�j~l jj~y 0j��. The above definitions
only give the values of the angles. The sign of the angle is
defined using the right-hand rule: curl the fingers along the
rotation direction, and if the thumb points to the positive
direction of the rotation axis, the rotation angle is positive;
otherwise, the rotation angle is negative. According to this
statement, both θ and ψ are always positive. The sign of ϕ
is determined as follows: if the x component of ŷ 0 is larger than
the x component of ŷb, ϕ is negative; otherwise, ϕ is positive.

C. Formulations in the System �x, y, z�
After the proper Euler angles �ϕ; θ;ψ� are determined, the
conical diffraction problem of the bottom waveguide grating

can be formulated according to [16] with some modifications.
The coordinate system �xb; yb; zb� is indicated by �x; y; z� for
simplicity, and z � 0 is set at the top surface of the grating,
as indicated in Fig. 5. The electric and magnetic fields of
the cover, grating, waveguide, and substrate layers are expressed
as follows:

◊ Electric field in the cover:

Ec � E inc �
X
i
�Rxix̂ � Ryiŷ � Rziẑ�

× exp�−jkx;ix − jkyy � jkcz;iz�; (3)

where

E inc � ��cos ψ cos θ cos ϕ − sin ψ sin ϕ�x̂
��cos ψ cos θ sin ϕ� sin ψ cos ϕ�ŷ − cos ψ sin θẑ�
· exp�−jk0nc�sin θ cos ϕx� sin θ sin ϕ y� cos θz��; (4)

◊ Magnetic field in the cover:

Hc � H inc �
�
−j

ffiffiffiffiffi
ϵ0
μ0

r �X
i
�Axix̂ � Ayiŷ � Aziẑ�

· exp�−jkx;ix − jkyy� jkcz;iz�; (5)

where

H inc � nc

ffiffiffiffiffi
ϵ0
μ0

r
��− cos ψ sin ϕ − sin ψ cos ϕ cos θ�x̂

� �cos ψ cos ϕ − sin ψ sin ϕ cos θ�ŷ �H inc;z ẑ�
· exp�−jk0nc�sin θ cos ϕx � sin θ sin ϕy � cos θz��;

(6)

◊ Electric field in the grating:

Eg �
X
i

�Sxi�z�x̂ � Syi�z�ŷ � Szi�z�ẑ� exp�−jkx;ix − jkyy�;

(7)

◊ Magnetic field in the grating:

Hg �
�
−j

ffiffiffiffiffi
ϵ0
μ0

r �X
i

�Uxi�z�x̂ � Uyi�z�ŷ � Uzi�z�ẑ�

· exp�−jkx;ix − jkyy�; (8)

◊ Electric field in the waveguide:

Ew �
X
i

�Pxi�z�x̂ � Pyi�z�ŷ � Pzi�z�ẑ� exp�−jkx;ix − jkyy�;

(9)

Fig. 4. Rotation about an arbitrary axis â can be decomposed into a
series of rotation operations. The first step is rotating the vector a
about the zt -axis by an angle θ1 such that a 0 is in the xt zt plane,
and the second step is rotating the vector a 0 about the yt -axis by
an angle θ2 such that a 0 0 is along the z-axis. In this figure, both θ1
and θ2 are negative (clockwise).

Fig. 5. Coordinate axes of the bottom grating; z � 0 is located at
the top surface of the grating.
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◊ Magnetic field in the waveguide:

Hw �
�
−j

ffiffiffiffiffi
ϵ0
μ0

r �X
i

�Qxi�z�x̂ � Qyi�z�ŷ � Qzi�z�ẑ�

· exp�−jkx;ix − jkyy�; (10)

◊ Electric field in the substrate:

Es �
X
i

�T xix̂ � T yiŷ � T ziẑ�

· exp�−jkx;ix − jkyy − jksz;i�z − tg − tw��; (11)

◊ Magnetic field in the substrate:

Hs �
�
−j

ffiffiffiffiffi
ϵ0
μ0

r �X
i
�Bxix̂ � Byiŷ � Bziẑ�

· exp�−jkx;ix − jkyy − jksz;i�z − tg − tw��; (12)

where the summation is from i � −�s − 1�∕2 to �s − 1�∕2 and s
is the total number of diffraction orders (an odd number for
calculation convenience). The propagation constants kx;i, ky,
kcz;i, and ksz;i are defined as follows:

◊ Propagation constant in the x direction:

kx;i � k0nc sin θ cos ϕ − iK ; (13)

◊ Propagation constant in the y direction:

ky � k0nc sin θ sin ϕ; (14)

◊ Propagation constant in the z direction:

krz;i �
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2r k20 − k

2
x;i − k2y

q
n2r k20 > k2x;i � k2y

−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;i � k2y − n2r k20

q
n2r k20 < k2x;i � k2y

r � c; s;

(15)

where k0 � 2π∕λ0.
The space harmonics of the tangential electric and magnetic

fields in the grating are given by [16] as follows:
◊ X component of electric field of ith order in the grating:

Sxi�z� �
Xs

p�1

wg
2;i;pfCg�

2;p exp�−k0qg2;p�z − z1��

� Cg−
2;p exp�k0qg2;p�z − z2��g; (16)

◊ Y component of electric field of ith order in the grating:

Syi�z� �
Xs

p�1

vg11;i;pfCg�
1;p exp�−k0qg2;p�z − z1��

� Cg−
1;p exp�k0qg2;p�z − z2��g

�
Xs

p�1

vg12;i;pfCg�
2;p exp�−k0qg2;p�z − z1��

� Cg−
2;p exp�k0qg2;p�z − z2��g; (17)

◊ X component of magnetic field of ith order in the
grating:

Uxi�z� �
Xs

p�1

wg
1;i;pf−Cg�

1;p exp�−k0qg2;p�z − z1��

� Cg−
2;p exp�k0qg1;p�z − z2��g; (18)

◊ Y component of magnetic field of ith order in the grating:

Uyi�z� �
Xs

p�1

vg21;i;pf−Cg�
1;p exp�−k0qg2;p�z − z1��

� Cg−
1;p exp�k0qg2;p�z − z2��g

�
Xs

p�1

vg22;i;pf−Cg�
2;p exp�−k0qg2;p�z − z1��

� Cg−
2;p exp�k0qg2;p�z − z2��g; (19)

where z1 � 0 and z2 � tg . The space harmonics of the tangen-
tial electric and magnetic fields in the waveguide, namely Pxi,
Pyi, Qxi, and Qyi, are of the same forms as Eqs. (16) to (19)
except changing the superscript g to w and setting z1 � tg and
z2 � tg � tw. The parameters w, v, and q for the grating layer
are defined in [16], while those for the waveguide layer have
the same forms as in the grating but can be simplified due
to the constant permittivity of the waveguide. In fact, ww

1;i;p �
ww
2;i;p � ww

i;p and qw1;p � qw2;p � qwp . Furthermore, given a par-
ticular diffraction order i, there exists one and only one p � γ
such that ww

i;γ � 1 and ww
i;p � 0 for p ≠ γ. As a result, the space

harmonics of the tangential electric and magnetic fields in the
waveguide can be simplified as follows:

◊ X component of electric field of ith order in the
waveguide:

Pxi�z� � Cw�
2;γ exp�−k0qwγ �z − tg��

� Cw−
2;γ exp�k0qwγ �z − tg − tw��; (20)

◊ Y component of electric field of ith order in the
waveguide:

Pyi�z� � �vw11;i;γCw�
1;γ � vw12;i;γC

w�
2;γ � exp�−k0qwγ �z − tg��

� �vw11;i;γCw−
1;γ � vw12;i;γC

w−
2;γ� exp�k0qwγ �z − tg − tw��

� Iw�i exp�−k0qwγ �z − tg�� � Iw−i exp�k0qwγ �z − tg − tw��;
(21)

◊ X component of magnetic field of ith order in the
waveguide:

Qxi�z� � −Cw�
1;γ exp�−k0qwγ �z − tg��

� Cw−
1;γ exp�k0qwγ �z − tg − tw��; (22)

◊ Y component of magnetic field of ith order in the
waveguide:

Qyi�z� � �−vw21;i;γCw�
1;γ − vw22;i;γC

w�
2;γ � exp�−k0qwγ �z − tg��

� �vw21;i;γCw−
1;γ � vw22;i;γC

w−
2;γ� exp�k0qwγ �z − tg − tw��

� Jw�i exp�−k0qwγ �z − tg�� � Jw−i exp�k0qwγ �z − tg − tw��:
(23)

Actually, k0qwγ � jkwz;i, where kwz;i is defined in the same
way as in Eq. (15).
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D. Formulations in the System �x 0; y 0; z 0�
Now the coordinate system is switched from �x; y; z� to
�x 0; y 0; z 0�, as indicated in Fig. 3. This step simplifies the E field
and H field expressions of the incident wave, as can be seen by
comparing Eq. (4) and Eq. (6) with Eq. (25) and Eq. (27),
respectively. The main goal of switching the coordinate system
is to follow the formulation in [16]. The final results will not be
affected if the calculations are done in �x; y; z�. For a particular
diffraction order i, the rotation angle φi about the zb-axis is
determined by φi � arctan�ky∕kxi�, and this rotation angle
can be visualized in Fig. 6. For the i � 0 order, φ0 � ϕ.
The new coordinate system is related to the original system
by x 0 � cos φiX � sin φiY and Y 0 � − sin φiX � cos φiY ,
where X and Y represent variables in the original coordinate
system, and X 0 and Y 0 represent variables in the new coordi-
nate system.

The formulations follow [16] except for those representing
the tangential fields in the cover and substrate. Only the mod-
ifications are presented here. In the new coordinate system:

◊ Electric field in the cover:

E 0
c � E 0

inc �
X
i

�R 0
xi x̂ 0 � R 0

yi ŷ 0 � Rziẑ�

· exp�−jk 0x;ix 0 − jk 0yy 0 � jkcz;iz�; (24)

where

E 0
inc � �cos ψ cos θx̂ 0 � sin ψ ŷ 0 − cos ψ sin θẑ�

· exp�−jk0nc�sin θx 0 � cos θz��; (25)

◊ Magnetic field in the cover:

H 0
c � H 0

inc �
�
−j

ffiffiffiffiffi
ϵ0
μ0

r �X
i
�A 0

xi x̂ 0 � A 0
yi ŷ 0 � Aziẑ�

· exp�−jk 0x;ix 0 − jk 0yy 0 � jkcz;iz�; (26)

where

H 0
inc � nc

ffiffiffiffiffi
ϵ0
μ0

r
�− sin ψ cos θx̂ 0 � cos ψ ŷ 0 � sin ψ sin θẑ�

· exp�−jk0nc�sin θx 0 � cos θz��; (27)

◊ Electric field in the substrate:

E 0
s �

X
i

�T 0
xi x̂ 0 � T 0

yi ŷ 0 � T ziẑ�

· exp�−jk 0x;ix 0 − jk 0yy 0 − jksz;i�z − tg − tw��; (28)

◊ Magnetic field in the substrate:

Hs �
�
−j

ffiffiffiffiffi
ϵ0
μ0

r �X
i

�B 0
xi x̂ 0 � B 0

yi ŷ 0 � Bziẑ�

· exp�−jk 0x;ix 0 − jk 0yy − jksz;i�z − tg − tw��. (29)

From Maxwell’s equations and the characteristics of plane
waves ~E · ~k � 0, the magnetic field components A 0

xi, A 0
yi,

B 0
xi, and B 0

yi can each be expressed as a function of the electric
field components:

A 0
xi �

j
k0kc;zi

�k 0xik 0yR 0
xi � �k20n2c − k 02xi �R 0

yi �; (30)

A 0
yi �

−j
k0kc;zi

��k20n2c − k 02y �R 0
xi � k 0xik 0yR 0

yi �; (31)

B 0
xi �

−j
k0ks;zi

�k 0xik 0yT 0
xi � �k20n2s − k 02xi �T 0

yi �; (32)

B 0
yi �

j
k0ks;zi

��k20n2s − k 02y �T 0
xi � k 0xik 0yT 0

yi �: (33)

Then, all the tangential fields in the new coordinate system
are matched at boundaries z � 0 (cover–grating interface), z �
tg (grating–waveguide interface), and z � tg � tw (waveguide–
substrate interface), resulting in the following matrices:

◊ At z � 0:

2
64

sin ψδi0
jnc sin ψ cos θδi0
cos ψ cos θδi0
−jnc cos ψδi0

3
75�

2
64

0 I
−jRA −jRB
I 0

jRC jRA

3
75�R 0

x
R 0

y

�

�

2
664

Vg
ss Vg

sp Vg
ssX

g
1 Vg

spX
g
2

Wg
ss Wg

sp −Wg
ssX

g
1 −Wg

spX
g
2

Vg
ps Vg

pp Vg
psX

g
1 Vg

ppX
g
2

Wg
ps Wg

pp −Wg
psX

g
1 −Wg

ppX
g
2

3
775
2
664
Cg�

1

Cg�
2

Cg−
1

Cg−
2

3
775; (34)

◊ At z � tg :2
664

Vg
ssX

g
1 Vg

spX
g
2 Vg

ss Vg
sp

Wg
ssX

g
1 Wg

spX
g
2 −Wg

ss −Wg
sp

Vg
psX

g
1 Vg

ppX
g
2 Vg

ps Vg
pp

Wg
psX

g
1 Wg

ppX
g
2 −Wg

ps −Wg
pp

3
775
2
664
Cg�

1

Cg�
2

Cg−
1

Cg−
2

3
775

�

2
664
Vw

ss Vw
sp Vw

ssXw
1 Vw

spXw
2

Ww
ss Ww

sp −Ww
ssXw

1 −Ww
spXw

2

Vw
ps Vw

pp Vw
psXw

1 Vw
ppXw

2

Ww
ps Ww

pp −Ww
psXw

1 −Ww
ppXw

2

3
775
2
664
Cw�

1

Cw�
2

Cw−
1

Cw−
2

3
775; (35)Fig. 6. 3D wave vector diagram of conical diffraction. The top half

sphere represents the k0nc surface, and the bottom half sphere repre-
sents the k0ns surface.
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where

Vr
ss � FcVr

11; Vr
sp � −FsWr

2 � FcVr
12;

Wr
ss � FcWr

1 � FsVr
21; Wr

sp � FsVr
22;

Vr
ps � FsVr

11; Vr
pp � FcWr

2 � FsVr
12;

Wr
ps � −FsWr

1 � FcVr
21; Wr

sp � FsVr
22; (37)

where r � g or w, Fc , Fs, RA, RB, RC, TA, TB, and TC are
diagonal matrices with diagonal elements cos φi, sin φi,
k 0xik 0y∕�k0kc;zi�, �k20n2c − k 02xi �∕�k0kc;zi�, �k20n2c − k 02y �∕�k0kc;zi�,
k 0xik 0y∕�k0ks;zi�, �k20n2s − k 02xi �∕�k0ks;zi�, �k20n2s − k 02y �∕�k0ks;zi�,
respectively, and the matrices Wr , Vr consist of elements w
and v as defined in [16]. Note the field amplitudes in the gra-
ting region correspond to the (xt , yt , zt ) coordinate system.
After solving the above matrix equations using the transfer
matrix approach [18] or singular value decomposition [17],
the field amplitudes R, T , and C can be determined. The
diffraction efficiencies in the cover (DEc) and the substrate
(DEs) can be subsequently calculated:

DEc;i �
Re�R 0

xi�−jA 0
yi�� − R 0

yi�−jA 0
xi���

nc cos θ
; (38)

DEs;i �
Re�T 0

xi�−jB 0
yi�� − T 0

yi�−jB 0
xi���

nc cos θ
: (39)

The above formulations produce the same results as those
presented in [16]. The sum of the diffraction efficiencies is
unity as a result of energy conservation in the z direction.
Compared with those presented in [16], the present formula-
tions have the advantages that the x and y components of the
electric and magnetic fields are clearly presented and calculated,
and they can be easily referenced in the following analysis.

E. Determination of Coupling Efficiency into the
Waveguide
When the RCWA-based approach is used, the coupling effi-
ciency into the waveguide can only be determined from the
out-diffraction process, taking advantage of the light reciproc-
ity. This is because the conservation of energy is only fulfilled in
the normal direction of the waveguide plane (z direction), and
there is no direct comparison between the incident light power
and the guided power in the waveguide. The EIS method [17]
was proposed to determine the radiation factor α of an arbitrary
waveguide grating for TE polarization, which could be sub-
sequently used to calculate the single-grating out-diffraction
efficiency and approximate grating-to-grating coupling
efficiency. The EIS method can also be used to analyze the

coupling efficiency under conical mounting, provided the
propagating 0 and �1 orders are dominant.

Under perfect grating-to-grating alignment, a TE-polarized
guided wave (with field components Ey, Hz , Hx) with propa-
gation constant β is diffracted out of the top grating in the di-
rection of i � �1 order and incident onto the bottom grating.
As a result, the propagation constant of the coupled wave in the
bottom waveguide should also be β. When the bottom grating
is rotated relative to the top grating, the out-diffracted light
from the top grating is conically incident on the bottom gra-
ting. For demonstration purposes, only coupling into the TE
mode of the bottom grating is considered.

The first step in determining the coupling efficiency into the
bottom waveguide is to find the equivalent index slabs with
indices nl that reproduce the fields outside of the grating layer.
All fields in the structures as well as the propagation constants
can be readily obtained from the in-coupling process discussed
in the previous sections. Four equivalent index layers with uni-
form refractive indices are used to replace the grating layer, and
the ith order electric field in the y direction of the l th slab is

Ely;i�z� � Cl�
i expf−jklz;i �z − �l − 1�t l �g

� Cl−
i exp�jklz;i�z − l t l ��; (40)

where t l � tg∕4. With small rotation angles, higher diffraction
orders may propagate but they are not dominant. Therefore,
only two diffraction orders (0 and �1) will be considered in
determining the equivalent indices. By imposing boundary
conditions on the tangential electric (Ey) and magnetic (Hx)
fields in the coordinate system (xb, yb, zb), the following trans-
fer matrix formulation can be obtained for the i � 0 and �1
orders:

�
aδi0 � Ryi

bδi0 − jk0Axi

�
�

Y4
l�1

�
1 X l;i

−k̃l z;i k̃l z;iX l ;i

�� X l;i 1

−k̃l z;iX l ;i k̃l z;i

�−1

×
� Iw�i � Iw−i X w;i

−jk0�−Cw�
i;γ � Cw−

i;γ X w;i�

�
; (41)

where X l;i � exp�−jk̃lz;i t l �, X w;i � exp�−jkwz;itw�, a �
cos ψ cos θ sin ϕ� sin ψ cos ϕ, b � −k0nc�cos ψ sin ϕ�
sin ψ cos ϕ cos θ�, Ryi � sin φiR 0

xi � cos φiR 0
yi, Axi �

cos φiA 0
xi − sin φiA 0

yi, and k̃l z;i is defined as

k̃l z;i �
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l k

2
0 − k

2
x;i

q
Re�k̃l z;i� > Im�k̃l z;i�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2l k

2
0 − k

2
x;i

q
Re�k̃l z;i� < Im�k̃l z;i�

; (42)

because the unknowns nl are complex-valued.
Equation (41) generates two equations for each of the i � 0

and �1 orders, and thus there will be a total of four equations.
The problem then becomes finding four equivalent refractive
indices nl such that the four equations are satisfied simultane-
ously. This is achieved with the MATLAB function fsolve with
the Trust-Region–Dogleg algorithm [19].

After the equivalent indices are determined, the radiation
factor α is the single unknown, which is incorporated in the
following transfer matrix formulation:
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�
1
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�
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Y4
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�
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�� X l;i 1

−k̃l z;iX l ;i k̃l z;i

�−1
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1 Xw;i

−k̃wz;i k̃wz;iX w;i

�� X w;i 1

−k̃wz;iX w;i k̃wz;i

�−1

×
�

1

−k̃sz;i

�
T i �

�Qi;1

Qi;2

�
T i; (43)

valid for both i � 0 and �1 orders, where k̃cz;i, k̃wz;i, k̃sz;i
are calculated based on Eq. (42), in which kx;0 � β − jα
and kx;1 � K − β − jα, where K is the grating vector
(K � 2π∕Λ, Λ is the grating period). The sign of the real part
of kx;1 is not of consequence since kx;1 is squared when calcu-
lating propagation constants in the z direction. Equation (43)
results in two equations k̃cz;iQi;1 � Qi;2 (i � 0 or 1) with one
unknown α, which can be solved by MATLAB function fsolve
with the Levenberg–Marquardt algorithm.

After α is determined, the diffraction efficiency can be
calculated using the method stated in [17], except changing
the expression for kx;i from Eq. (7) of [17] to kx;i �
k0nc sin θ cos ϕ − iK when calculating the matrices involved
in Eq. (23) of [17].

3. RESULTS AND DISCUSSION

A. System under Investigation
For demonstration purposes, two optimized binary grating
designs obtained by the RCWA-EIS method [17] are used
to investigate the rotation effects on grating-to-grating coupling
efficiency. The given parameters are as follows: free-space
wavelength λ0 � 1.55 μm, cover refractive index nc � 1
(air), substrate refractive index ns � 1.45 (SiO2), grating
groove refractive index ngr � 1 (air), grating ridge refractive in-
dex nrd � 2.46 (Si3N4), waveguide refractive index nw � 3.45
(Si), grating fill factor f � 0.5, number of grating periodsN �
30 or 50 (depending on the rotation configuration), waveguide
thickness tw � 0.22 μm, and waveguide separation in the z
direction d � 2 μm. The fundamental mode propagation
constant of the 0.22 μm thick waveguide is calculated to be
β0 � 11.3710 μm−1. The total number of space harmonics
is set to be n � 7. Under the perfectly aligned condition,
the coupling angle θ, grating period Λ, grating thickness tg ,
preferential coupling ratio (PC), radiation factor (α), single-
grating diffraction efficiency (DE ) at N � 30 and N � 50
of two optimized cases are summarized in Table 1. The grating
structures are optimized using the method presented in [17].
Randomly selecting grating parameters may cause irregular
and unstable results, which cannot correctly represent changes
and trends in diffraction efficiencies. Each case will be investi-
gated in the situation for which the bottom substrate is rotated
about the xt -axis, zt -axis, and the vector [2 2 1], respectively.

For all the analyses presented in this work, the coupling effi-
ciency into the TE mode (with field components Ey, Hz , Hx)
is calculated.

The grating-to-grating coupling efficiency η can be approxi-
mated by η � DEt ·DEb, where DEt and DEb are the single-
grating diffraction efficiencies of the top and the bottom
grating, respectively. Since the misalignment is treated as the
relative rotation of the bottom grating with respect to the
top grating, the top-grating diffraction efficiency is the same as
that in the perfectly aligned situation; that is, DEt � ffiffiffiffiffi

η0
p

,
where η0 is the grating-to-grating coupling efficiency under
perfect alignment. Thus, the bottom-grating diffraction effi-
ciency can be approximated as DEb � η∕ ffiffiffiffiffi

η0
p

. This approxi-
mation is used to obtain the bottom-grating diffraction
efficiency from the grating-to-grating coupling efficiency calcu-
lated by 3D-FDTD. The RCWA-EIS calculations consider
coupling the out-diffracted light from the top grating into the
TE mode of the bottom waveguide. The 3D-FDTD simula-
tions calculate the total guided flux (both TE and TM contri-
butions) in the bottom grating, but the TM contributions are
smaller than the TE ones, as discussed in the following section.

B. Rotation about the xt -Axis
Figures 7(a) and 7(b) show the preferential coupling ratios
(PC-EIS) or the branching ratio calculated by the RCWA-
EIS method, the bottom-grating diffraction efficiencies calcu-
lated by the RCWA-EIS method (DE-EIS) and 3D-FDTD
simulation (DE-FDTD) for the two cases when the bottom
grating is rotated about the xt -axis. Figures 7(c) and 7(d) show
the radiation factor α for the two cases. It can be observed
that PC exhibits negligible changes as the rotation angle about
the xt -axis changes from −0.1 rad (−5.73°) to 0.1 rad (5.73°).
This indicates that for an infinitely long and infinitely wide
grating, the in-coupled light of TE polarization is unaffected
when the rotation angle is small (	5.73°). This is due to
the fact that the Bragg condition is not significantly disturbed
when the grating is rotated about the xt - (xb- equivalently) axis,
which is perpendicular to the groove line. It can also be
observed that the shape of the DE-EIS curves is largely deter-
mined by the shape of the α curves, which means the radiation
is a critical factor in determining the bottom-grating diffraction
efficiency when the grating length l � N · Λ is limited in this
rotation configuration. The radiation factor smoothly increases
as the rotation angle increases from the perfectly aligned situa-
tion (α � 0.0138 for Case 1 and α � 0.0167 for Case 2 at
rotation angle � 0), giving rise to a valley-shaped DE-EIS
curve. At rotation angle 	0.1 rad (	5.73°), the DE-EIS in-
creases about 10% for Case 1 and 5% for Case 2. The increase
in diffraction efficiency is well known in over-modulated gra-
tings under off-Bragg conditions [20]. The FDTD results also
demonstrate the trend in which diffraction efficiency increases

Table 1. Optimized Parameters and Calculated Single-Grating Diffraction Efficiencies for Binary Grating Cases 1 and 2

Case θi Λ tg PC α DE DE
Number rad (deg) μm μm μm−1 N � 50 at N � 30

1 0.2665 rad (15.27°) 0.6316 0.3951 0.7734 0.0138 0.4499 0.3150
2 0.2021 rad (11.58°) 0.6477 0.3249 0.7163 0.0167 0.4735 0.3420

10012 Vol. 55, No. 35 / December 10 2016 / Applied Optics Research Article



as rotation angle about the xt -axis increases. The 3D-FDTD
calculates the total guided flux in the bottom waveguide along
the xb direction defined by the following equation:

S̄ · x̂b �
1

2
Re�Ey ·H�

z − Ez ·H�
y �; (44)

where the first part is the TE contribution and the second part
is the TM contribution. However, the TM power is much
smaller, as shown in Fig. 8. As a result, the flux calculated
by 3D-FDTD can be treated as TE-type. An important obser-
vation should be made regarding the numerical instability of
the 3D-FDTD calculation, and this is discussed in Appendix A.

It generally requires 3 days to finish one 3D-FDTD simu-
lation at a resolution of 60 ppd (pixels per unit distance) with
20-core parallel computing, and it would take even longer
when the resolution is set to a higher value. In comparison,
it takes less than 1 min for the RCWA-EIS method to generate
the entire curves shown in Fig. 7.

C. Rotation about the zt -Axis
Figures 9(a) and 9(b) show the PC-EIS, DE-EIS, and
DE-FDTD plots for the two cases when the bottom grating
is rotated about the zt -axis. Figures 9(c) and 9(d) show the
α plots for the two cases. The α curve for Case 1 exhibits a
noticeably wavy shape due to numerical sensitivity problems
in the RCWA-EIS method. In order to give a better presenta-
tion, the curve is Gaussian-fitted. The same fitting procedure is
also done on the α curve for Case 2. Like in the x-rotation cases,
the PC curves exhibit negligible changes as the bottom grating
rotates about the zt -axis, and the shape of the DE-EIS curves
is determined by those of the radiation factors. At rotation
angle 	0.1 rad (	5.73°), the DE-EIS decreases about 25%
for both cases. The FDTD results are in good agreement with
the RCWA-EIS ones, because rotating about the zt -axis, or
equivalently, the surface normal of the waveguide, does not
suffer from the staircase problem. In other words, the wave-
guide surface remains flat, and the only place that requires
the staircase approximation is on the edges. Since the width
of the waveguide (W � 10 μm) is set much larger than the

waveguide thickness (tg � 0.22 μm) to model a slab wave-
guide, the rough edges would not affect the field distribution
in the slab structure.

D. Rotation about the Vector [2 2 1]
Figures 10(a) and 10(b) show the PC-EIS, DE-EIS, and
DE-FDTD plots for the two cases when the bottom grating
is rotated about an axis defined by the vector [2 2 1] in the
top coordinate system. Figures 10(c) and 10(d) show the α
plots for the two cases. Since the bottom waveguide may be
in contact with the top waveguide after rotations in FDTD
models, a shorter grating length with N � 30 is used instead
of N � 50. The location of the corners of the waveguides
and grating ridges are calculated to ensure the top and bottom
structures are not in contact. In this rotation configuration,
α changes significantly and it influences the definition of
DE-EIS. The resulting shape of the DE-EIS curves is not sym-
metric. The rotation axis has a yt component, and rotating
about the yt -axis has an equivalent effect as changing the
incident angle of the incoming light to the bottom grating,
which greatly disturbs the Bragg condition and induces a large
change in the diffraction efficiency. Both the DE-EIS and
DE-FDTD curves first increase and then decrease when the
rotation angle changes from 0 to −0.1 rad (−5.73°), while the

Fig. 7. Plots of PC-EIS, DE-EIS, DE-FDTD, and α for Cases 1
and 2, respectively, when the bottom system is rotated about the
xt -axis. The number of grating periods N is set to 50.

Fig. 8. Guided power along the xb direction in the bottom wave-
guide, including TE power, TM power and total power, calculated by
RCWA. Power is integrated from z � tg to z � tg � tw for a unit
length in the yb direction.

Fig. 9. Plots of PC-EIS, DE-EIS, DE-FDTD, and α for Cases 1
and 2, respectively, when the bottom system is rotated about the
zt -axis. The number of grating periods N is set to 50.
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curves monotonically decrease when the rotation angle changes
from 0 to 0.1 rad (5.73°).

While the data points of DE-EIS and DE-FDTD at 0 rad
rotation match well, the general shape of the curves at the
two ends exhibits a noticeable discrepancy. This is because
an infinite-long slab waveguide grating is assumed in the
RCWA-EIS method, while structures with limited dimensions
are modeled in the FDTD simulation. The influence of this
geometric factor is explained using Fig. 11. The input light
is launched into the top waveguide along the −x direction
and out-diffracted when it is incident onto the top grating.
Both the out-diffracted power and the guided power in the
top waveguide exhibit an exponential decay along the −x direc-
tion. When the bottom waveguide is rotated by �δ about the
y-axis, the right end of the bottom waveguide is closer to the
top waveguide, and the high power (indicated by the thickest
arrow) confined in the top waveguide may be evanescent-
coupled to the bottom waveguide, resulting in larger diffraction
efficiencies at positive rotation angles. On the contrary, the left
end of the bottom waveguide is closer to the top grating when
the bottom grating is rotated by −δ. Since the power at the left
end is much smaller, the coupled power in the bottom wave-
guide is negligible. The same reasoning can be made in explain-
ing the offsets of the DE curves obtained by RCWA and
FDTD in Fig. 10. As shown in Fig. 12, the positively rotated
grating is closer to the high-power end of the top grating, re-
sulting in a moderate efficiency hill of DE-FDTD in the δ > 0
region, while the negatively rotated bottom grating is closer to

the low-power end of the top grating, resulting in lower effi-
ciency in the δ < 0 region.

4. CONCLUSIONS

In this work, angular (rotational) misalignment of overlaid
waveguide gratings was analyzed using the 3D-RCWA method
together with the RCWA-EIS method. The RCWA-EIS
method has been used to calculate and optimize single-grating
diffraction efficiencies under perfect alignment. In the present
work, it has been extended to the conical diffraction cases and
applied to the simulation of waveguide-grating-to-waveguide-
grating coupling efficiency under angular misalignment. The
method is computationally efficient and generally accurate
compared with the 3D-FDTD simulation. In one example,
the computational time of an interlayer grating coupler model
was reduced from 3 days to less than 1 min by using RCWA-
EIS instead of FDTD with minimal error. This work offers a
feasible simulation tool for the analysis and design of interlayer
waveguide grating coupling for optical interconnects in high-
density electronics.

APPENDIX A: ACCURACY OF FDTD
CALCULATION

The accuracy of the 3D-FDTD calculation is largely deter-
mined by the resolution, or number of pixels (grids) per unit
distance (this unit will be given as “ppd” in the following dis-
cussion). The 3D-FDTD is based on a set of cubic grids, which
cannot properly represent a slanted surface; instead, a staircase
substitution is necessary to model the rotated 3D geometry.
This requires relatively high resolution to calculate correctly
the fields and fluxes. For example, in Fig. 13, finer grids result

Fig. 10. Plots of PC-EIS, DE-EIS, DE-FDTD, and α for Cases 1
and 2, respectively, when the bottom system is rotated about the vector
[2 2 1]. The number of grating periods N is set to 30.

Fig. 11. Schematic diagram show positive (�δ) and negative (−δ)
rotation of the bottom grating about the y-axis. Rotation angles are
exaggerated.

Fig. 12. MATLAB-generated figure shows the rotation of the bot-
tom grating about the vector [2 2 1]. The geometries defined by the
solid lines represent the unrotated top and bottom gratings. The geom-
etries defined by the dashed lines and dashed-dotted lines represent the
bottom grating rotated 0.1 rad and −0.1 rad about [2 2 1], respectively.

Fig. 13. In the 2D-FDTD simulation, the whole computation cell
is populated by rectangular grids (or cubic grids for 3D). A slanted
rectangle (represented by the area circled by the red dashed line) is
modeled as a cluster of grids. The slanted surface is rougher when
the resolution (number of grids per unit length) is smaller.
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in a smoother surface compared with coarser grids. If the
resolution is not properly set, the FDTD simulation result will
be invalid. Figure 14 compares the flux in the waveguide cal-
culated by FDTD at resolutions 50 ppd and 60 ppd, respec-
tively, when the bottom system of Case 2 is rotated 0.02 rad
about the xt -axis. The slice number is defined in Fig. 15. It is
observed that the flux calculated at resolution 50 ppd is on the
order of 1 × 10−3 units, which is 1 order of magnitude smaller
than the fluxes calculated at resolution 60 ppd. This indicates
that 50 ppd is not large enough to model correctly the wave-
guide fields; that is, the waveguide surface is too rough to guide
a wave and the rough edges may serve as scattering centers. In
fact, the total guided flux calculated by the FDTD simulation
would be different but would converge to the same order of
magnitude when the resolution is set at different values, which
is a conclusion drawn after the simulations at resolutions 60,
70, and 80 ppd were performed.
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Fig. 14. Guided flux confined in the waveguide cross section for
Case 2 with rotation angle 0.02 rad. Left: resolution is 50 ppd; right:
resolution is 60 ppd. Flux data were obtained from the MEEP FDTD
simulation in which dimensionless (or relative) units are assumed in all
calculations.

Fig. 15. Cross section of the waveguide is equally divided into 21
sections, which are labeled from −10 to 10 along the yb direction.

Research Article Vol. 55, No. 35 / December 10 2016 / Applied Optics 10015


